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TDK- és kutatási témáink
Vizuális kérgi reprezentációk modellezése

Figure-6 (Bányai)
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Előfeltételek: önálló programozási készség, lineáris algebra, analízis, 
valószínűségszámítás ismerete, angol nyelv használata

Az agykéreg vizuális rendszere az objektumfelismerést hierarchikus feldolgozás során valósítja meg, 
amelyben az idegsejtek együttes aktivitása a stimulust felépítő képelemek kompozícióját kódolja. E 
folyamat valószínűségi következtetésként való modellezése lehetővé teszi a neurális aktivitás 
predikcióját, és így az egymásra épülő agykérgi reprezentációk feltárását. Modelljeinket a gépi tanulás 
legújabb eredményeit felhasználva, a partnereink által feladatokat végrehajtó állatok agykérgéből 
elvezetett neurális aktivitáson tesztelve fejlesztjük adatelemzési módszerekkel párhuzamosan.
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Memóriarendszerek és kognitív reprezentációk modellezése
Az emberi kognició során az agynak olyan információfeldolgozási folyamatokat kell megoldania mint az 
érzékelés, predikció, döntéshozás vagy a környezet modelljének felépítése tapasztalatok alapján. 
Csoportunkban ezen folyamatokat normatív megfontolások és a gépi tanulás eszközei segítségével 
vizsgáljuk. Futó projektjeinkben többek között az agy a környezetről és konkrét feladatokról alkotott 
belső reprezentációját következtetjük ki partnereink által rögzített viselkedéses adatokra alapozva, 
illetve tanulóágensek által használt memóriarendszerek optimális dinamikáját és ennek az emberi 
memóriakísérletekre való implikációit tárjuk fel.
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A kurzus célja, hogy a hallgatók betekintést nyerjenek az idegrendszer működésébe. A modellek 
szerepe kettős: Egyrészt az idegrendszer egy komplex rendszer, a sokféle információ 
szintetizálásához pontos modellekre van szükség. Másrészt az idegrendszer modellezi a 
külvilágot, az aktivitását megfigyelve ezekről a modellekről is információt gyűjthetünk. A 
kurzushoz szabadon választható, egyszerű gyakorlati feladatok (programozás R nyelven) is 
kapcsolódnak.


feltételek: matematikai alapismeretek, magyar nyelv

tematika: http://cneuro.rmki.kfki.hu/education/neuromodel 

meghirdetve: ELTE TTK, BME TTK; őszi félév

oktatók: Orbán Gergő, Somogyvári Zoltán, Ujfalussy Balázs

Kurzusaink I.
Idegrendszeri modellezés

Statisztikai tanulás az idegrendszerben
Az agy működésének megértése a tudomány egyik legérdekesebb kérdése napjainkban. A 
kurzus a kérdést az agy feladatainak matematikai leírása és algoritmikus megoldása irányából  
közelíti meg, különös tekintettel a probabilisztikus módszerek alkalmazására. Foglalkozik a  
biológiai tanulás, reprezentáció és kódolás matematikai modelljeivel, illetve azzal is, hogy ezeket
 a számításokat hogyan implementálhatja az idegrendszer. A kurzus az általános elvek áttekintés
én túl speciálisan a vizuális információ agykérgi feldolgozásának problémájára koncentrál. 


feltételek: lineáris algebra, programozási tapasztalat, magyar nyelv

tematika: http://golab.wigner.mta.hu/teaching 

meghirdetve: ELTE TTK, BME TTK; tavaszi félév

oktatók: Orbán Gergő, Bányai Mihály, Nagy Dávid, Török Balázs
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A kurzus azokat a matematikai elemzései eljárásokat mutatja be, amelyek az idegrendszerben mért - 
elsősorban elektromos – jelek elemzésében és értelmezésében jelenősek, kezdve a legegyszerűbb 
számításoktól egészen a legújabb módszerekig, akár nyitott kérdéseket is tárgyalva. Bár a kurzus 
során az idegi elektromos aktivitás elemzése lesz a vezérfonál és az ismertetett módszerek 
alkalmazási területe, az itt megismert matematikai eszközök a tudomány – és nem csak a tudomány - 
bármely területén használhatóak és hasznosak, ahol mért adatok alapján, egy komplex rendszer 
szerkezetének és működésének felderítése a cél.


feltételek: matematikai alapismeretek, magyar nyelv

tematika: http://cneuro.rmki.kfki.hu/education/statbio

meghirdetve: ELTE TTK; tavaszi félév

oktató: Somogyvári Zoltán

Kurzusaink II.

A kurzus célja, hogy különböző élettudományi tudományterületek példáján keresztül a diákok 
elsajátítsák az adatfeldolgozás, beleértve a biostatisztika, jelfeldolgozás, modellezés, képfeldolgozás 
és más matematikai módszerek elméleti, és alkalmazásuk informatikai alapjait egy-egy közismert 
program használatába történő bevezetéssel úgy, hogy azt saját kutatási feladataikban is alkalmazni 
tudják.


feltételek: magyar nyelv

tematika: http://cneuro.rmki.kfki.hu/education/neuroinfo

meghirdetve: SE Szenthágotai DI; őszi félév, kétévente 

oktatók: Négyessy László, Somogyvári Zoltán, Bányai Mihály, Bazsó Fülöp, Zalányi László és mások

Neuroelektrofiziológiai adatelemzés

Neuroinformatika
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Kurzusaink III.
Neocortex: from structure to function
feltételek: angol nyelv

tematika: http://sysneuro-semester.org/

meghirdetve: SE; nyári szünet, egy héten tömbösítve

oktató: Négyessy László

Computational Models in Systems Neuroscience
feltételek: angol nyelv

tematika: http://sysneuro-semester.org/

meghirdetve: SE; nyári szünet, egy héten tömbösítve

oktató: Bányai Mihály

Learning and Navigation
feltételek: angol nyelv

tematika: http://sysneuro-semester.org/

meghirdetve: SE; nyári szünet, egy héten tömbösítve

oktató: Somogyvári Zoltán

Statistics of the Brain
feltételek: angol nyelv

tematika: http://sysneuro-semester.org/

meghirdetve: SE; nyári szünet, egy héten tömbösítve

oktató: Orbán Gergő
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(e.g., Holmes and Gross, 1984; Horel, 1996; Schiller, 1995; Wei-
skrantz and Saunders, 1984; Yaginuma et al., 1982). While these
deficits are not always severe, and sometimes not found at all
(Huxlin et al., 2000), this variability probably depends on the
type of object recognition task (and thus the alternative visual
strategies available). For example, some (Schiller, 1995; Wei-
skrantz and Saunders, 1984), but not all, primate ventral stream
lesion studies have explicitly required invariance.
While the human homology to monkey IT cortex is not well es-

tablished, a likely homology is thecortex in andaround thehuman
lateral occipital cortex (LOC) (see Orban et al., 2004 for review).
For example, a comparison of monkey IT and human ‘‘IT’’
(LOC) shows strong commonality in the population representa-
tion of object categories (Kriegeskorte et al., 2008). Assuming
these homologies, the importance of primate IT is suggested by
neuropsychological studies of human patients with temporal
lobedamage,whichcansometimesproduce remarkably specific
object recognition deficits (Farah, 1990). Temporary functional
disruptionof parts of thehumanventral stream (using transcranial
magnetic stimulation, TMS) can specifically disrupt certain types
of object discrimination tasks, such as face discrimination
(Pitcher et al., 2009). Similarly, artificial activation of monkey IT
neurons predictably biases the subject’s reported percept of
complex objects (Afraz et al., 2006). In sum, long-term lesion
studies, temporary activation/inactivation studies, and neuro-
physiological studies (described below) all point to the central
role of the ventral visual stream in invariant object recognition.
Ventral Visual Stream: Multiple, Hierarchically
Organized Visual Areas
The ventral visual stream has been parsed into distinct visual
‘‘areas’’ based on anatomical connectivity patterns, distinctive

anatomical structure, and retinotopic mapping (Felleman and
Van Essen, 1991). Complete retinotopic maps have been re-
vealed for most of the visual field (at least 40 degrees eccentricity
from the fovea) for areas V1, V2, and V4 (Felleman and Van Es-
sen, 1991) and thus each area can be thought of as conveying
a population-based re-representation of each visually presented
image. Within the IT complex, crude retinotopy exists over the
more posterior portion (pIT; Boussaoud et al., 1991; Yasuda
et al., 2010), but retinotopy is not reported in the central and
anterior regions (Felleman and Van Essen, 1991). Thus, while
IT is commonly parsed into subareas such as TEO and TE (Jans-
sen et al., 2000; Saleem et al., 2000, 1993; Suzuki et al., 2000;
Von Bonin and Bailey, 1947) or posterior IT (pIT), central IT
(cIT), and anterior IT (aIT) (Felleman and Van Essen, 1991), it is
unclear if IT cortex is more than one area, or how the term
‘‘area’’ should be applied. One striking illustration of this is recent
monkey fMRI work, which shows that there are three (Tsao et al.,
2003) to six (Tsao et al., 2008a) or more (Ku et al., 2011) smaller
regions within IT that may be involved in face ‘‘processing’’ (Tsao
et al., 2008b) (also see Op de Beeck et al., 2008; Pinsk et al.,
2005). This suggests that, at the level of IT, behavioral goals
(e.g., object categorization) (Kriegeskorte et al., 2008; Naselaris
et al., 2009) many be a better spatial organizing principle than
retinotopic maps.
All visual cortical areas share a six-layered structure and the

inputs and outputs to each visual area share characteristic
patterns of connectivity: ascending ‘‘feedforward’’ input is
received in layer 4 and ascending ‘‘feedforward’’ output origi-
nates in the upper layers; descending ‘‘feedback’’ originates in
the lower layers and is received in the upper and lower layers
of the ‘‘lower’’ cortical area (Felleman and Van Essen, 1991).

Figure 3. The Ventral Visual Pathway
(A) Ventral stream cortical area locations in the macaque monkey brain, and flow of visual information from the retina.
(B) Each area is plotted so that its size is proportional to its cortical surface area (Felleman and Van Essen, 1991). Approximate total number of neurons (both
hemispheres) is shown in the corner of each area (M = million). The approximate dimensionality of each representation (number of projection neurons) is shown
above each area, based on neuronal densities (Collins et al., 2010), layer 2/3 neuronal fraction (O’Kusky and Colonnier, 1982), and portion (color) dedicated to
processing the central 10 deg of the visual field (Brewer et al., 2002). Approximate median response latency is listed on the right (Nowak and Bullier, 1997;
Schmolesky et al., 1998).

Neuron 73, February 9, 2012 ª2012 Elsevier Inc. 419
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Generatív/rekogniciós modell

 11

objektumok

objektum elhelyezkedése |  
méret, hely, helyzet, világítás

objektum tulajdonságai | 
élek, felületi mintázatok

stimulus

generatív m
odell

inferencia/felism
erés

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu  12

Generatív/rekogniciós modell

szituáció / környezet

objektumok

objektum elhelyezkedése |  
méret, hely, helyzet, világítás

objektum tulajdonságai | 
élek, felületi mintázatok

stimulus

Modell definició -> generáció:
P(x | z)

Inferencia igénye -> rekogníció:
P(z | x)
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Lineáris modellek
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objektum tulajdonságai | 
élek, felületi mintázatok

stimulus

x = A z + eps

x = c (A z) + eps

V1 receptive mezők: 

• orientált 

• sáváteresztő 

• lokalizált

V1 stimulus-függés 
• kontraszt invariancia 
• extra-klasszikus 

receptív mezők
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Gauging V2 responses so far

• gratings 

• contours 

• angles 

• other forms of second order stats 

• border ownership
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Learning about the stats of an image

• Registering the responses of linear filters (simple cells) 

• Registering the responses of energy filters (complex cells) 

• Marginal statistics: variance, kurtosis, skewness 
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• Registering correlations between orientations 

• Registering correlations between spatial frequencies 

• Registering correlations across positions

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Synthetic textures
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of the between-subject variability being captured by differences in 
overall performance ( 0). As expected, the simpler V1 model required 
a smaller scaling to generate metameric images. Specifically, critical  
scaling values for the V1 model were 0.26  0.05 (mean  s.d.), 
whereas values for the mid-ventral model were roughly twice as  
large (0.48  0.02).

Estimation of physiological locus
We then compared the psychophysically estimated scaling parameters 
to physiological estimates of receptive field size scaling in different 
cortical areas. Functional magnetic resonance imaging has been used 
to measure population receptive fields in humans by estimating the 
spatial extent of a stimulus that contributes to the hemodynamic 
response across different regions of the visual field13. Although these 
sizes grow with eccentricity, and across successive visual areas, they 
include additional factors, such as variability in receptive field posi-
tion and non-neural hemodynamic effects, which may depend on 
both eccentricity and visual area. We chose to compare our results 

Figure 2 Mid-ventral model, example metameric stimuli and experimental task. (a) In each spatial pooling region, the image was first decomposed 
using a population of model V1 cells (both simple and complex), varying in their preferred orientation and spatial frequency. Model responses were 
computed from products of the filter outputs across different positions, orientations and scales, averaged over each of the pooling regions.  
(b) An original photograph of the Brunnen der Lebensfreude in Rostock, Germany. (c,d) Synthetic image samples, randomly selected from the set of 
images that generated model responses identical to those of the original (b). The value of the scaling parameter (used to determine the pooling regions 
of the model) was selected to yield 75% correct performance in discriminating such synthetic images (see Fig. 4). The two images, when viewed with 
fixation at the center (red dot), should appear to be nearly identical to the original and to each other, despite gross distortions in the periphery (for 
example, a woman’s face is scrambled and dissolves into the spray of the fountain). (e) Psychophysical ABX task. Human observers viewed a sequence 
of two synthetic stimuli ABX, each randomly selected from the set of all images having model responses matched to an original image, followed by a 
third image that was identical to one of the first two. Observers indicated which of the first two images matched the third.
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Figure 3 Metamer experiment results. Each graphs shows, for an 
individual observer, the proportion of correct responses in the ABX task 
as a function of the scaling parameter (ratio of receptive field diameter 
to eccentricity) of the model used to generate the stimuli. Data were 
averaged over stimuli drawn from four naturalistic images. Dark gray 
indicates the mid-ventral model (see Fig. 2), whereas light gray  
indicates the V1 model (see Supplementary Fig. 2). Shaded region 
indicates the 68% confidence interval obtained using bootstrapping.  
The gray horizontal lines indicate chance performance. Black lines 
indicate performance of observer model with critical scaling and gain 
parameters chosen to maximize the likelihood of the data for each 
individual observer (see Online Methods). r 2 values for the fits are 
indicated at the bottom of each plot.
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We performed an additional experiment to determine directly 
whether our mid-ventral model could predict recognition performance 
in a crowding task. The experimental design was inspired by a previous 
study linking statistical pooling in the periphery to crowding24. First, 
we measured observers’ ability to recognize target letters presented 
peripherally (6 deg) between two flanking letters, varying the target-
to-flanker spacing to obtain a psychometric function (Fig. 6a). We 
then used the mid-ventral model to generate synthetic metamers for 
a subset of these peripherally presented letter stimuli and measured 
the ability of observers to recognize the letters in these metamer 
stimuli under foveal viewing. Recognition failure (or success) for a 
single metamer cannot alone indicate crowding (or lack thereof), but 
the average performance across an ensemble of metamer samples 
 quantifies the limitations on recognizability imposed by the model.

Average recognition performance for the metamers is well matched 
to that of their corresponding letter stimuli (Fig. 6a) for metamers 
synthesized with scaling parameter s = 0.5 (the average critical scaling 
estimated for our human observers). For metamers synthesized with 
scaling parameters of s = 0.4 or s = 0.6, performance was significantly 
higher or lower, respectively (P < 0.0001, two-tailed paired t test across 
observers and conditions). These results are consistent across all obser-
vers, at all spacings, and for two different eccentricities (Fig. 6b).

DISCUSSION
We constructed a model for visual pattern representation in the 
mid-level ventral stream that computes local correlations amongst 

V1 responses in eccentricity-dependent pooling regions. In addition, 
we developed a method for generating images with identical model 
responses and used these synthetic images to show that when the 
pooling region sizes of the model are set correctly, images with iden-
tical model responses are indistinguishable (metameric) to human 
observers, despite severe distortion of features in the periphery. We 
found that the critical pooling size required to produce metamericity 
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Figure 6 Crowding experiment. (a) Recognition performance for two 
different kinds of stimuli: peripherally viewed triplets of letters and 
foveally viewed stimuli synthesized to produce model responses identical 
to their corresponding letter triplets. Black dots represent the average 
recognition performance for a peripheral letter between two flankers, 
as a function of letter-to-letter spacing (n = 5 observers). The black 
line represents the best fitting Weibull function. The gray shaded 
region represents the 95% confidence interval for fit obtained through 
bootstrapping. Synthetic stimuli were generated for spacings yielding 
approximately 50%, 65% and 80% performance, based on the average 
psychometric function. Colored dots indicate average recognition 
performance for model-synthesized stimuli (foveally viewed). Different 
colors indicate the scaling parameter used in the model (purple, 0.5; 
orange, 0.6; green, 0.4). Error bars represent s.d. across observers.  
(b) Comparison of recognition performance for the peripheral letter  
triplets (from the psychometric function in a) and the foveally viewed 
synthetic stimuli (colored dots from a). Each point represents data from 
a single observer for a particular spacing and scaling. Two observers 
performed an additional condition at a larger eccentricity (not shown in a) 
to extend the range of performance levels (the six left-most points).
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Untangling invariant object
recognition
James J. DiCarlo and David D. Cox

McGovern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Despite tremendous variation in the appearance of visual
objects, primates can recognize a multitude of objects,
each in a fraction of a second, with no apparent effort.
However, the brain mechanisms that enable this funda-
mental ability are not understood. Drawing on ideas from
neurophysiology and computation, we present a grap-
hical perspective on the key computational challenges of
object recognition, and argue that the format of neuronal
population representation and a property that we term
‘object tangling’ are central. We use this perspective to
show that the primate ventral visual processing stream
achieves a particularly effective solution in which single-
neuron invariance is not the goal. Finally, we speculate on
the key neuronal mechanisms that could enable this
solution, which, if understood, would have far-reaching
implications for cognitive neuroscience.

Introduction
Our daily activities rely heavily on the accurate and rapid
identification of objects in our visual environment. The
apparent ease of with which we recognize objects belies the
magnitude of this feat: we effortlessly recognize objects
from among tens of thousands of possibilities and we do so
within a fraction of a second, in spite of tremendous
variation in the appearance of each one. Understanding
the brain mechanisms that underlie this ability would be a
landmark achievement in neuroscience.

Object recognition is computationally difficult for many
reasons, but the most fundamental is that any individual
object can produce an infinite set of different images on the
retina, due to variation in object position, scale, pose and
illumination, and the presence of visual clutter (e.g. [1–5]).
Indeed, although we typically see an object many times, we
effectively never see the same exact image on our retina
twice.Althoughseveral computational effortshaveattacked
this so-called ‘invariance problem’ (e.g. [1,3,6–12]), a robust,
real-world machine solution still evades us and we lack a
satisfyingunderstanding of how theproblem is solvedby the
brain. We believe that these two achievements will be
accomplished nearly simultaneously by an approach that
takes into account both the computational issues and the
biological clues and constraints.

Because it is easy to get lost in the sea of previous
studies and ideas, the goal of this manuscript is to clear

the table, bring forth key ideas in the context of the primate
brain, and pull those threads together into a coherent
framework. Below, we use a graphical perspective to pro-
vide intuition about the object recognition problem, show
that the primate ventral visual processing stream pro-
duces a particularly effective solution in the inferotem-
poral (IT) cortex, and speculate on how the ventral visual
stream approaches the problem. Along the way, we argue
that some approaches are only tangential to, or even
distract from, understanding object recognition.

What is object recognition?
We define object recognition as the ability to accurately
discriminate each named object (‘identification’) or set of
objects (‘categorization’) from all other possible objects,
materials, textures other visual stimuli, and to do this
over a range of identity-preserving transformations of
the retinal image of that object (e.g. image transformations
resulting from changes in object position, distance, and
pose). Of course, vision encompasses many disparate chal-
lenges that may interact with object recognition, such as
material and texture recognition, object similarity esti-
mation, object segmentation, object tracking and trajectory
prediction. Exploring such possible interactions is not our
goal. Instead, we aim to see how far a clear focus on the
problem of object recognition will take us. We concentrate
on what we believe to be the core of the brain’s recognition
system – the ability to rapidly report object identity or
category after just a single brief glimpse of visual input
(<300 ms; see Box 1) [13,14].

What computational processes must underlie object
recognition?
To solve a recognition task, a subjectmust use some internal
neuronal representation of the visual scene (population
pattern of activity) tomake a decision (e.g. [15,16]): is object
A present or not? Computationally, the brain must apply a
decision function [16] to divide an underlying neuronal
representational space into regions where object A is pre-
sent and regions where it is not (Figure 1b; one function for
each object to be potentially reported). Because brains
compute with neurons, the subject must have neurons
somewhere in its nervous system – ‘read-out’ neurons –
that can successfully report if object A was present [17]. Of
course, there are many relevant mechanistic issues, for
example, how many such neurons are involved in comput-
ing the decision, where are they in the brain, is their
operation fixed or dynamically created with the task at
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graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
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arguments apply when more objects are in the world of
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decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under
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dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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not yet know how to build (e.g. representations in IT), but
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Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
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generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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and is responsible for these perceptual phenomena, then the
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stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing
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same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs
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ceptually distinct, and human sensitivity to their higher order
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a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.
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the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
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stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses
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neurons for the different texture families and the image samples
drawn from those families, respectively.
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characteristic firing rate for each image, with some variability
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
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The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.

2 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1510847113 Ziemba et al.

and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing
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synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
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reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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field (CRF) size. This matching procedure had little effect on V2
performance in either task, but did reduce V1 performance on the
sample task and increase V1 performance on the family task
(Methods). However, performance in the two areas remained sig-
nificantly different, suggesting more complex forms of selectivity
are involved.

Comparing Selectivity of Neuronal Populations. To elucidate the V2
response properties that allow it to outperform V1 in family
classification, we examined the dependence of performance on
the differences in statistics between pairs of texture families. We
built a Poisson maximum likelihood decoder to best discriminate
between each pair of texture families (105 different comparisons).
Comparing performance in V1 and V2 reveals two prominent
features (Fig. 6A). First, performance in V1 and V2 was highly
correlated across the different texture discriminations (r = 0.82, P <
0.001), suggesting that some of the features that drive performance

in V1 are also responsible for performance in V2. Second, V2
neurons performed better for nearly all pairs, and this improve-
ment was approximately independent of the performance seen in
V1 (Fig. 6A). A straight-line fit suggests that if V1 discrimination
performance were at chance, V2 performance would be 65%
correct [discriminability (d′) = 0.54]. To understand this relation-
ship, we sought to separate those stimulus properties that drive
performance in both V1 and V2 from those stimulus properties that
underlie the increase in performance of V2 over V1.
We chose texture families for this study that differed in their

spectral content: the relative amount of energy at different ori-
entations and spatial frequencies. V1 neurons are highly selec-
tive for spectral content (4), and this selectivity is maintained in
V2 (13). We wondered whether the spectral characteristics of the
stimuli could explain V1 performance. Across all 105 pairs of
texture families, we measured the magnitude of the difference in
spectral statistics between the two families. We then predicted
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V1 Texture family

Latent
dimension 1

Latent
dimension 2

A

B

Fig. 4. Two-dimensional visualization of neural population responses in V1 and V2. (A) V1 population response to each visual texture stimulus, displayed in a
2D coordinate system that captures the responses of 102 V1 neurons [computed using t-SNE (30)]. Each point represents one texture image, with color in-
dicating the texture family. The larger, desaturated disks in the background indicate the centroid of all samples within each family. (B) Same analysis for the
responses of 103 V2 neurons.
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responses of 103 V2 neurons.
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sample task and increase V1 performance on the family task
(Methods). However, performance in the two areas remained sig-
nificantly different, suggesting more complex forms of selectivity
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sample task and increase V1 performance on the family task
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nificantly different, suggesting more complex forms of selectivity
are involved.
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V1 discrimination performance from the statistical differences,
over all pairs (Methods and Fig. 6B). The spectral differences
predicted V1 performance well (r = 0.7, P < 0.001), and the same
model also provided a good prediction for V2 performance (r =
0.59, P < 0.001). Reoptimizing the weights to predict V2 re-
sponses barely improved the correlation (r = 0.6, P < 0.001),
consistent with the notion that the spectral information repre-
sented in V2 is directly inherited from V1. However, the spectral
statistics captured little of the difference in performance be-
tween V1 and V2 (r = 0.22, P < 0.05).
These analyses suggest that the superior performance of V2

must be due to the higher order (i.e., beyond second order)
correlations present in the texture model. To test this theory, we
extracted the parameters that capture higher order statistics
through correlations of filter response magnitudes across position,
frequency, and orientation, and projected out the portion cap-
tured by the spectral statistics. We then predicted the difference in
V1 and V2 performance (Fig. 6C). Differences in the higher order

statistics, in contrast to spectral statistics, provided a good pre-
diction for the V1/V2 performance difference (r = 0.61, P < 0.001).
In summary, V1 discrimination performance was well captured

by the spectral statistics of naturalistic textures. This same set of
statistics captured a significant portion of V2 discrimination
performance, but most of the superiority of V2 over V1 comes
from higher order statistics.

Discussion
Our results support the hypothesis that populations of V2 neurons
represent statistics of the activity of local ensembles of V1 neu-
rons, which capture the appearance of naturally occurring tex-
tures. Using a set of stimuli for which these statistics are tightly
controlled, we showed that, relative to neurons in V1, V2 neurons
exhibit increased selectivity for these statistics, accompanied by an
increased tolerance for randomized image variations that do not
affect these statistics. This “tolerance to statistical resampling”
complements the more widely discussed visual invariances to
geometric distortions (e.g., translation, rotation, dilation) (8, 10)
or changes in the intensity, color, or position of a light source (9, 31).
Our results also help to integrate and interpret other findings.

The selectivity of V2 neurons for many artificial stimuli, including
gratings, angles, curves, anomalous contours, and texture-defined
patterns, is nearly the same as the selectivity of V1 neurons (14–
17, 32–35). This result would be expected if V2 neurons are se-
lective for a broad set of V1 response statistics and not for a small
subset of specialized combinations of V1 inputs, as assumed by
these approaches. On the other hand, the tolerance of V2 cells
identified here does seem consistent with the previously identified
behaviors of “complex unoriented” V2 cells (36), which are se-
lective for patches of light of a particular size but tolerant to
changes in position over a much larger region. Such a property
may explain why orientation selectivity so strongly predicted tol-
erance in V2 but less so in V1. This relationship might also reflect
greater heterogeneity of orientation tuning within V2 receptive
fields (16), providing a substrate for computing local orientation
statistics.
Our results complement recent work demonstrating V2 se-

lectivity for third- and fourth-order pixel statistics. Yu et al. (20)
examined responses of V1 and V2 neurons to binary images
synthesized with controlled pixel statistics up to fourth order, and
found that neuronal selectivity for multipoint (i.e., third and
fourth order) correlations is infrequent in V1 but common in V2.
The strength of this work derives from the well-defined stimulus
ensemble, which covers the full set of statistics up to fourth or-
der, and allows a thorough assessment of the selectivity for in-
dividual statistics in the responses of single neurons. On the
other hand, the restriction to statistics of a particular order, al-
though mathematically natural, is not necessarily aligned with the
restrictions imposed by the computational capabilities of bi-
ological visual systems, and this may explain why selectivity of V2
neurons for these statistics is only modestly greater than selectivity
of V1 neurons. The stimuli in our experiments are constrained by
statistics that are defined in terms of an idealized response model
for a V1 population. Although they also constrain multipoint pixel
statistics, they do not isolate them in pure form, and they span too
large a space to allow a thorough experimental characterization of
selectivity in individual cells. On the other hand, they represent
quantities that may be more directly related to the construction of
V2 responses from V1 afferents, and they allow direct synthesis of
stimuli bearing strong perceptual resemblance to their ecological
counterparts (18, 23, 24, 37).
The particular statistics we matched to create our texture

families are surely not represented fully and only in V2, and this
may explain why the reported difference in selectivity and tolerance
between V1 and V2, although robust, is not qualitative. In partic-
ular, these statistics include both the local correlation of oriented
linear filter responses (equivalent to a partial representation of
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Fig. 5. Quantifying representational differences between V1 and V2.
(A) Schematic of sample (black) and family (red) classification. For sample
classification, holdout data were classified among the 15 different samples
for each family. Performance for each of the families was then averaged
together to get total performance. For family classification, the decoder was
trained on multiple samples within each family, and then used to classify
held out data into each of the 15 different families. (B) Comparison of pro-
portion of correct classification of V1 and V2 populations for family classifi-
cation (red) and sample classification (black). We computed performance
measures for both tasks using five different population sizes, indicated by the
dot size (n = 1, n = 3, n = 10, n = 30, and n = 100). Chance performance for both
tasks was 1/15. Error bars represent 95% confidence intervals of the boot-
strapped distribution over included neurons and cross-validation partitioning.
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model. Therefore we aim to derive predictions that are invariant over the structure
of a wide class of hierarchical generative models.

We define a hierarchical generative model in which the stimulus x is a result of a
hierarchical stochastic process (Fig. 1A). High-level complex features, z, define
how low-level features, y, are combined (Fig. 1A). These combinations define
how likely a particular low-level feature is given a set of high-level latent activa-
tions, P(y | z). Activations of low-level features, y, determine the combinations of
pixel intensities (Fig. 1B) and define how likely a particular image is if we assume
that a particular setting of low-level features underlies the image, P(x |y).

Once the prior probability of high-level activations, P(z), is defined, the model
can be specified by formulating the joint distribution of the model variables:

P(x,y, z) = P(x |y) P(y | z) P(z) (S1)

Inference can be performed in this model by establishing the posterior probability
for different variables. We are interested in the posterior of the low-level vari-
able, y, given that we observe the stimulus x. Since we cannot experimentally
access the activities of the variables at the topmost layer, the relevant posterior is
marginalized over them: P(y |x). This can be expanded based on the dependen-
cies of the generative model and marginalizing over z:

P(y |x) = P(x |y) P(y)
P(x)

=

R
P(x |y) P(y | z) P(z) dz

P(x)
(S2)

This form demonstrates how the prior of y is dependent on high-level variables
z, thus we see that intermediate inferences depend not only on the stimulus x but
also on higher level inferences. However, the integral over the prior of the topmost
variable, z, makes this relationship obscure, therefore we intend to obtain a more
transparent form.

We aim for an explicit expression on how y depends on observations, x, and high-
level inferences z. In other words, we want to formulate the distribution over y
conditioned on both the parent and children variables:

P(y |x, z) = P(x |y) P(y | z) P(z)
P(x, z)

=
P(x |y) P(y | z)

P(x | z) (S3)

2

Rearranging Eq. S3 and substituting it into Eq. S2 we obtain

P(y |x) =

R
P(y |x, z) P(x | z) P(z) dz

P(x)
=

=

Z
P(y |x, z) P(z |x) dz (S4)

This is the exactly the form of posterior we used to predict stimulus-dependent
correlation patterns.

Further insgiht can be obtained by assuming a specific simple model structure,
namely that the high-level variable, z, is discrete and that the distribution of high-
level features is described by a categorical distribution. In such a case the integral
in Eq. S4 is simplified to a sum:

P(y |x) =
X

i

P(y |x, zi) P(zi |x) dz, (S5)

which is a weighted sum over possible configurations of z (Fig. 1).

In the visual cortex, activity of neurons at different levels of hierarchy (e.g. V1
and V2) represent different levels of latent variables of an internal model. Fea-
tures these variables are activated by determine the selectivity of the neurons.
During perception inferences are assumed to be made in this hierarchical internal
model, which determines how the mean, variance and correlations change when
the stimulus changes. Critically, the term P(y |x, zi) is a product of two terms
conveying bottom-up and top-down information-respectively:

P(y |x, zi) = P(y |x) P(y | zi) . (S6)

Both of the terms contribute to setting the mean activations of the low-level neu-
rons, y. The correlation between a pair of low level neurons, y1 and y2 does
not depend on the stimulus identitiy in a large class of generative models, thus
the first term does not contribute to stimulus-dependent correlations. The second
term, however, determines how the two low-level variables covary in the context
of one value of the high-level variable or the other. If high-level variables are
identified with texture-sensitive neurons in V2 then it becomes clear that differ-
ent textures imply different covariations between low-level feuatures represented
in the lower layer, V1. Thus, such a scheme predicts that correlations will be
stimulus-dependent if different stimuli induce different configurations of high-
level variables being active.
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model. Therefore we aim to derive predictions that are invariant over the structure
of a wide class of hierarchical generative models.

We define a hierarchical generative model in which the stimulus x is a result of a
hierarchical stochastic process (Fig. 1A). High-level complex features, z, define
how low-level features, y, are combined (Fig. 1A). These combinations define
how likely a particular low-level feature is given a set of high-level latent activa-
tions, P(y | z). Activations of low-level features, y, determine the combinations of
pixel intensities (Fig. 1B) and define how likely a particular image is if we assume
that a particular setting of low-level features underlies the image, P(x |y).

Once the prior probability of high-level activations, P(z), is defined, the model
can be specified by formulating the joint distribution of the model variables:

P(x,y, z) = P(x |y) P(y | z) P(z) (S1)

Inference can be performed in this model by establishing the posterior probability
for different variables. We are interested in the posterior of the low-level vari-
able, y, given that we observe the stimulus x. Since we cannot experimentally
access the activities of the variables at the topmost layer, the relevant posterior is
marginalized over them: P(y |x). This can be expanded based on the dependen-
cies of the generative model and marginalizing over z:

P(y |x) = P(x |y) P(y)
P(x)

=

R
P(x |y) P(y | z) P(z) dz

P(x)
(S2)

This form demonstrates how the prior of y is dependent on high-level variables
z, thus we see that intermediate inferences depend not only on the stimulus x but
also on higher level inferences. However, the integral over the prior of the topmost
variable, z, makes this relationship obscure, therefore we intend to obtain a more
transparent form.

We aim for an explicit expression on how y depends on observations, x, and high-
level inferences z. In other words, we want to formulate the distribution over y
conditioned on both the parent and children variables:

P(y |x, z) = P(x |y) P(y | z) P(z)
P(x, z)

=
P(x |y) P(y | z)

P(x | z) (S3)

2

Rearranging Eq. S3 and substituting it into Eq. S2 we obtain

P(y |x) =

R
P(y |x, z) P(x | z) P(z) dz

P(x)
=

=

Z
P(y |x, z) P(z |x) dz (S4)

This is the exactly the form of posterior we used to predict stimulus-dependent
correlation patterns.

Further insgiht can be obtained by assuming a specific simple model structure,
namely that the high-level variable, z, is discrete and that the distribution of high-
level features is described by a categorical distribution. In such a case the integral
in Eq. S4 is simplified to a sum:

P(y |x) =
X

i

P(y |x, zi) P(zi |x) dz, (S5)

which is a weighted sum over possible configurations of z (Fig. 1).

In the visual cortex, activity of neurons at different levels of hierarchy (e.g. V1
and V2) represent different levels of latent variables of an internal model. Fea-
tures these variables are activated by determine the selectivity of the neurons.
During perception inferences are assumed to be made in this hierarchical internal
model, which determines how the mean, variance and correlations change when
the stimulus changes. Critically, the term P(y |x, zi) is a product of two terms
conveying bottom-up and top-down information-respectively:

P(y |x, zi) = P(y |x) P(y | zi) . (S6)

Both of the terms contribute to setting the mean activations of the low-level neu-
rons, y. The correlation between a pair of low level neurons, y1 and y2 does
not depend on the stimulus identitiy in a large class of generative models, thus
the first term does not contribute to stimulus-dependent correlations. The second
term, however, determines how the two low-level variables covary in the context
of one value of the high-level variable or the other. If high-level variables are
identified with texture-sensitive neurons in V2 then it becomes clear that differ-
ent textures imply different covariations between low-level feuatures represented
in the lower layer, V1. Thus, such a scheme predicts that correlations will be
stimulus-dependent if different stimuli induce different configurations of high-
level variables being active.
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model. Therefore we aim to derive predictions that are invariant over the structure
of a wide class of hierarchical generative models.

We define a hierarchical generative model in which the stimulus x is a result of a
hierarchical stochastic process (Fig. 1A). High-level complex features, z, define
how low-level features, y, are combined (Fig. 1A). These combinations define
how likely a particular low-level feature is given a set of high-level latent activa-
tions, P(y | z). Activations of low-level features, y, determine the combinations of
pixel intensities (Fig. 1B) and define how likely a particular image is if we assume
that a particular setting of low-level features underlies the image, P(x |y).

Once the prior probability of high-level activations, P(z), is defined, the model
can be specified by formulating the joint distribution of the model variables:

P(x,y, z) = P(x |y) P(y | z) P(z) (S1)

Inference can be performed in this model by establishing the posterior probability
for different variables. We are interested in the posterior of the low-level vari-
able, y, given that we observe the stimulus x. Since we cannot experimentally
access the activities of the variables at the topmost layer, the relevant posterior is
marginalized over them: P(y |x). This can be expanded based on the dependen-
cies of the generative model and marginalizing over z:

P(y |x) = P(x |y) P(y)
P(x)

=

R
P(x |y) P(y | z) P(z) dz

P(x)
(S2)

This form demonstrates how the prior of y is dependent on high-level variables
z, thus we see that intermediate inferences depend not only on the stimulus x but
also on higher level inferences. However, the integral over the prior of the topmost
variable, z, makes this relationship obscure, therefore we intend to obtain a more
transparent form.

We aim for an explicit expression on how y depends on observations, x, and high-
level inferences z. In other words, we want to formulate the distribution over y
conditioned on both the parent and children variables:

P(y |x, z) = P(x |y) P(y | z) P(z)
P(x, z)

=
P(x |y) P(y | z)

P(x | z) (S3)

2

Rearranging Eq. S3 and substituting it into Eq. S2 we obtain

P(y |x) =

R
P(y |x, z) P(x | z) P(z) dz

P(x)
=

=

Z
P(y |x, z) P(z |x) dz (S4)

This is the exactly the form of posterior we used to predict stimulus-dependent
correlation patterns.

Further insgiht can be obtained by assuming a specific simple model structure,
namely that the high-level variable, z, is discrete and that the distribution of high-
level features is described by a categorical distribution. In such a case the integral
in Eq. S4 is simplified to a sum:

P(y |x) =
X

i

P(y |x, zi) P(zi |x) dz, (S5)

which is a weighted sum over possible configurations of z (Fig. 1).

In the visual cortex, activity of neurons at different levels of hierarchy (e.g. V1
and V2) represent different levels of latent variables of an internal model. Fea-
tures these variables are activated by determine the selectivity of the neurons.
During perception inferences are assumed to be made in this hierarchical internal
model, which determines how the mean, variance and correlations change when
the stimulus changes. Critically, the term P(y |x, zi) is a product of two terms
conveying bottom-up and top-down information-respectively:

P(y |x, zi) = P(y |x) P(y | zi) . (S6)

Both of the terms contribute to setting the mean activations of the low-level neu-
rons, y. The correlation between a pair of low level neurons, y1 and y2 does
not depend on the stimulus identitiy in a large class of generative models, thus
the first term does not contribute to stimulus-dependent correlations. The second
term, however, determines how the two low-level variables covary in the context
of one value of the high-level variable or the other. If high-level variables are
identified with texture-sensitive neurons in V2 then it becomes clear that differ-
ent textures imply different covariations between low-level feuatures represented
in the lower layer, V1. Thus, such a scheme predicts that correlations will be
stimulus-dependent if different stimuli induce different configurations of high-
level variables being active.
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To elucidate the roles of visual areas V1 and V2 and their interac-
tion in early perceptual processing, we studied the responses of V1
and V2 neurons to statically displayed Kanizsa figures. We found
evidence that V1 neurons respond to illusory contours of the
Kanizsa figures. The illusory contour signals in V1 are weaker than
in V2, but are significant, particularly in the superficial layers. The
population averaged response to illusory contours emerged 100
msec after stimulus onset in the superficial layers of V1, and around
120–190 msec in the deep layers. The illusory contour response in
V2 began earlier, occurring at 70 msec in the superficial layers and
at 95 msec in the deep layers. The temporal sequence of the events
suggests that the computation of illusory contours involves inter-
cortical interaction, and that early perceptual organization is likely
to be an interactive process.

When viewing the Kanizsa display shown in Fig. 1a, we
perceive the borders of a square even in regions of the

image where there is no direct visual evidence for them. This is
one example of the phenomenon of illusory or subjective con-
tours (1). This perceptual phenomenon has been reported by von
der Heydt and colleagues (2, 3) to possess a direct physiological
correlate in macaque area V2, where some neurons were found
to respond to an illusory contour moving across their receptive
fields. In contrast, they failed to observe responses to illusory
contours in area V1. The apparent absence of illusory-contour
responses in area V1 is puzzling both because there are recurrent
pathways from V2 to V1 and because interaction between
modules is a key feature of many models for early perceptual
organization (4–7). Moreover, other groups have shown that
neurons in area V1 do detect subjective contours defined
indirectly in other ways, for example by the fracture line where
lines or out of phase sine wave gratings abut (8, 9). Because of
the nature of their stimuli, these studies (8, 9) did not resolve the
question of whether their results would apply to the illusory
contours as studied by Von der Heydt and colleagues. In light of
these considerations, we decided to reexamine the issue of neural
responses to illusory contours in areas V1 and V2. By using a
technique designed to call attention to the illusory square and
employing a static display that allowed tracking the temporal
evolution of responses, we have found that neurons in area V1
do respond to illusory contours, although at a latency greater
than that in V2.

We conducted the following neurophysiological experiment
on two awake behaving rhesus monkeys. In each trial, while the
monkey was fixating a red dot on the screen within a 0.5° fixation
window, a sequence of four stimuli was presented. The presen-
tation of each stimulus in the sequence lasted for 400 msec. On
completion of the sequence, the monkey had to make a saccadic
eye movement to another red dot that appeared at a random
position on the screen to complete the trial. The set of test stimuli
included a Kanizsa figure with illusory contours (Fig. 1a) and a
variety of control and comparison stimuli (Fig. 1 b–l). The
illusory square was 4° ! 4° in size. The corner disk (a disk with
a V-shaped indentation—pac-man) was 1° in radius. There was,
therefore, a 2° gap between the edges of the discs. For each cell,
the stimuli were rotated in such a way that the preferred
orientation of the cell was parallel to the contour being studied.

Over successive trials, one of the illusory contours in the figure
was placed at ten different locations relative to the center of the
receptive field, 0.25° apart, spanning a range of 2.25°, as shown
in Fig. 2a. Fig. 2b illustrates the presentation order of stimuli for
the sequence that displayed the Kanizsa square: First, four
complete circular discs were presented for 400 msec. Then, they
were abruptly transformed into four corner discs, producing the
illusion that a square had appeared in front of the four circular
discs. We found this manipulation more effective in evoking the
illusory contour response than simply presenting four corner
discs on the screen in one flash. These two steps were then
repeated in the sequence. Control stimuli were presented in the
same manner to allow for direct comparison. During any given
testing block, the Kanizsa sequences and the four different
control sequences (described in Fig. 1 caption) were presented
on interleaved trials.

We studied 53 V1 cells and 40 V2 cells from one monkey
(monkey A), and 58 V1 cells and 40 V2 cells from a second
monkey (monkey B). Recordings were made transdurally with
epoxy-coated tungsten electrodes through a surgically implanted
well overlying the operculum of area V1. Recording procedures
were identical to the ones described in ref. 7. Eye movements
were monitored by using implanted scleral search coils and
sampled at a rate of 200 Hz. V1 and V2 neurons were recorded
from the same wells. Some V2 neurons were recorded from the
narrow surface strip next to the V1!V2 border, where a transi-
tion from V1 to V2 was marked by a reversal in the progression
of receptive fields toward and away from the midline in the
visuotopic map, accompanied by an increase in their size. Other
V2 neurons were reached by advancing the electrodes past V1.
The transition to V2 was accompanied by a sudden shift in the
locations of the neurons’ receptive fields and by an increase in
receptive field size.

The neurons recorded were classified into the following four
groups according to cortical depths: V1S, V1D, V2S, and V2D,
where S stands for superficial layers and D for deep layers.
Cortical depth was estimated primarily from the distance be-
tween the recording site and the pial surface. The first 1 mm
below the pial surface was considered superficial V1 (V1S).
From 1 mm to the white matter was considered deep V1 (V1D).
This applied also to the V2 cells that were located in the narrow
strip on the surface. For V2 neurons located underneath V1, the
first 1 mm beyond the white matter was considered deep V2
(V2D); the next 1 mm of the cortical tissues was considered
superficial V2 (V2S).

The receptive field (RF) of each cell was first mapped roughly
with a moving bar, and then its receptive field was localized
precisely with a small f lashing bar. The receptive fields of the
cells recorded in both cortical areas were located at 0.6°–4°
eccentricity in the lower right quadrant of the visual field. At this
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in V2, but are significant, particularly in the superficial layers. The
population averaged response to illusory contours emerged 100
msec after stimulus onset in the superficial layers of V1, and around
120–190 msec in the deep layers. The illusory contour response in
V2 began earlier, occurring at 70 msec in the superficial layers and
at 95 msec in the deep layers. The temporal sequence of the events
suggests that the computation of illusory contours involves inter-
cortical interaction, and that early perceptual organization is likely
to be an interactive process.

When viewing the Kanizsa display shown in Fig. 1a, we
perceive the borders of a square even in regions of the

image where there is no direct visual evidence for them. This is
one example of the phenomenon of illusory or subjective con-
tours (1). This perceptual phenomenon has been reported by von
der Heydt and colleagues (2, 3) to possess a direct physiological
correlate in macaque area V2, where some neurons were found
to respond to an illusory contour moving across their receptive
fields. In contrast, they failed to observe responses to illusory
contours in area V1. The apparent absence of illusory-contour
responses in area V1 is puzzling both because there are recurrent
pathways from V2 to V1 and because interaction between
modules is a key feature of many models for early perceptual
organization (4–7). Moreover, other groups have shown that
neurons in area V1 do detect subjective contours defined
indirectly in other ways, for example by the fracture line where
lines or out of phase sine wave gratings abut (8, 9). Because of
the nature of their stimuli, these studies (8, 9) did not resolve the
question of whether their results would apply to the illusory
contours as studied by Von der Heydt and colleagues. In light of
these considerations, we decided to reexamine the issue of neural
responses to illusory contours in areas V1 and V2. By using a
technique designed to call attention to the illusory square and
employing a static display that allowed tracking the temporal
evolution of responses, we have found that neurons in area V1
do respond to illusory contours, although at a latency greater
than that in V2.

We conducted the following neurophysiological experiment
on two awake behaving rhesus monkeys. In each trial, while the
monkey was fixating a red dot on the screen within a 0.5° fixation
window, a sequence of four stimuli was presented. The presen-
tation of each stimulus in the sequence lasted for 400 msec. On
completion of the sequence, the monkey had to make a saccadic
eye movement to another red dot that appeared at a random
position on the screen to complete the trial. The set of test stimuli
included a Kanizsa figure with illusory contours (Fig. 1a) and a
variety of control and comparison stimuli (Fig. 1 b–l). The
illusory square was 4° ! 4° in size. The corner disk (a disk with
a V-shaped indentation—pac-man) was 1° in radius. There was,
therefore, a 2° gap between the edges of the discs. For each cell,
the stimuli were rotated in such a way that the preferred
orientation of the cell was parallel to the contour being studied.

Over successive trials, one of the illusory contours in the figure
was placed at ten different locations relative to the center of the
receptive field, 0.25° apart, spanning a range of 2.25°, as shown
in Fig. 2a. Fig. 2b illustrates the presentation order of stimuli for
the sequence that displayed the Kanizsa square: First, four
complete circular discs were presented for 400 msec. Then, they
were abruptly transformed into four corner discs, producing the
illusion that a square had appeared in front of the four circular
discs. We found this manipulation more effective in evoking the
illusory contour response than simply presenting four corner
discs on the screen in one flash. These two steps were then
repeated in the sequence. Control stimuli were presented in the
same manner to allow for direct comparison. During any given
testing block, the Kanizsa sequences and the four different
control sequences (described in Fig. 1 caption) were presented
on interleaved trials.

We studied 53 V1 cells and 40 V2 cells from one monkey
(monkey A), and 58 V1 cells and 40 V2 cells from a second
monkey (monkey B). Recordings were made transdurally with
epoxy-coated tungsten electrodes through a surgically implanted
well overlying the operculum of area V1. Recording procedures
were identical to the ones described in ref. 7. Eye movements
were monitored by using implanted scleral search coils and
sampled at a rate of 200 Hz. V1 and V2 neurons were recorded
from the same wells. Some V2 neurons were recorded from the
narrow surface strip next to the V1!V2 border, where a transi-
tion from V1 to V2 was marked by a reversal in the progression
of receptive fields toward and away from the midline in the
visuotopic map, accompanied by an increase in their size. Other
V2 neurons were reached by advancing the electrodes past V1.
The transition to V2 was accompanied by a sudden shift in the
locations of the neurons’ receptive fields and by an increase in
receptive field size.

The neurons recorded were classified into the following four
groups according to cortical depths: V1S, V1D, V2S, and V2D,
where S stands for superficial layers and D for deep layers.
Cortical depth was estimated primarily from the distance be-
tween the recording site and the pial surface. The first 1 mm
below the pial surface was considered superficial V1 (V1S).
From 1 mm to the white matter was considered deep V1 (V1D).
This applied also to the V2 cells that were located in the narrow
strip on the surface. For V2 neurons located underneath V1, the
first 1 mm beyond the white matter was considered deep V2
(V2D); the next 1 mm of the cortical tissues was considered
superficial V2 (V2S).

The receptive field (RF) of each cell was first mapped roughly
with a moving bar, and then its receptive field was localized
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cells recorded in both cortical areas were located at 0.6°–4°
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eccentricity, the receptive fields of V1 neurons studied ranged
from 0.3° to 1°, whereas those of V2 neurons ranged from 0.7°
to 2°. As we sought to understand how the same stimuli were
processed by the different cortical areas, we did not vary the size
of the test stimuli.

Fig. 3 presents the findings from a V1S neuron. Fig. 3 a and
c show that this cell responded significantly more to the illusory
contour than to the amodal condition (Fig. 1b) or to all of the
rotated corner disk configurations (Fig. 1 i–l). The illusory
contour elicited a response when it was placed at precisely the
same location at which a real contour elicited the maximum
response (Fig. 3a). However, the response to the illusory contour
appeared at 100 msec after the appearance of the Kanizsa
square, as compared with 45 msec for a real square (Fig. 3d).

We characterized a cell’s illusory contour responsiveness, or
its illusory contour response, by the following two modulation
indices: IC1 ! (Ri " Ra)!(Ri # Ra) and IC2 ! (Ri " Rr)!(Ri # Rr),
where Ri is the response to the illusory contour, Ra is the
response to the amodal condition, and Rr is the response to the

Fig. 1. Stimulus set used in the experiment. (a) Kanizsa figure made up of
four corner discs (pac-men). (b) Amodal figure (a gray square in a black
background partially occluded by a foreground surface with four apertures).
(c) Four circular discs. (d) Line square. (e) White square. ( f) Gray square. (g) Line
Square with four corner discs. (h) White square with four corner discs. (i–l)
Various configurations of the rotated corners. According to Kanizsa’s defini-
tion, amodal presence refers to the completion of part of an object that is not
directly visible because it is covered by another object. In b, we can see a gray
square against a black background behind a gray wall with four apertures. The
amodal contour of the gray square is not as immediately ‘‘visible’’ as the
subjective contour of the Kanizsa figure (a). For a cell selective for horizontal
edges, only the bottom horizontal contour and its neighboring positions
would be placed on the cell’s receptive field in a manner shown in Fig. 2a. For
cells with different orientation preference, each of the stimuli was rotated
accordingly so that the orientation preference of the cell was aligned with the
illusory contour. The five sequences used were: (c, a, c, a), (c, b, c, e), (c, g, c, h),
(m, d, m, f ), and (i, j, k, l), where the symbols stand for the defined above, and
m stands for the gray screen condition. (i, j, k, l) was designed to create the
perception that the four corner discs were rotating independently on screen
in a single trial. Later on, we also tested a sixth sequence, (c, j, c, l).

Fig. 2. a illustrates the spatial relationship between the fixation spot (black
dot), the cell’s receptive field (circle), and the stimulus figure. The cell’s
receptive field was placed in the middle of the illusory contour at the bottom
of the Kanizsa figure, for a cell selective for horizontal orientation. For cells of
other orientations, the stimuli were rotated accordingly so that the contour
was parallel with the preferred orientation of the cell. The stimulus was
presented in ten locations 0.25° apart in successive trials relative to the
receptive field so that the illusory contour was collinear with the ten line
segments as shown in the figure. b illustrates the presentation of the Kanizsa
square sequence, (c, a, c, a), where c is the four circular discs stimulus, and a is
the Kanizsa figure made up of four corner discs.

Fig. 3. a shows the spatial profile of a V1 neuron’s response to the contours
of both real and illusory squares, in a temporal window 100–150 msec after
the square appeared at different spatial placements relative to the receptive
field. This cell responded to the illusory contour when it was at precisely the
same location at which a real contour elicited the maximal response. The cell
also responded significantly better to the illusory contour than to the amodal
contour (t test, p $ 0.003), and did not respond to the rotated corner discs. b
shows the neuron’s response profile to a tiny bar of 0.1° % 0.2° visual angle
placed at different positions along the long-axis of the cell, indicating the
spatial extent of the cell’s receptive field (even when coupled with potential
eye movement jitters) is about 1° visual angle when plotted by a small bar. c
compares the temporal evolution of this cell’s response to the illusory contour,
the amodal contour and the various rotated corner disk controls at the
location where the real contour elicited the maximum response. The response
to the illusory contour emerged at about 100 msec after the illusory square
appeared. The cell responded slightly to the amodal and did not respond to
any of the rotated corner discs. d contrasts this cell’s response to the illusory
contour against its response to the real contours of line square (Fig. 1d), white
square (Fig. 1e ), and gray square (Fig. 1f ). The onset of the response to real
contours was at 45 msec, about 55 msec before the illusory contour response.
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appeared at 100 msec after the appearance of the Kanizsa
square, as compared with 45 msec for a real square (Fig. 3d).

We characterized a cell’s illusory contour responsiveness, or
its illusory contour response, by the following two modulation
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response to the amodal condition, and Rr is the response to the

Fig. 1. Stimulus set used in the experiment. (a) Kanizsa figure made up of
four corner discs (pac-men). (b) Amodal figure (a gray square in a black
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(c) Four circular discs. (d) Line square. (e) White square. ( f) Gray square. (g) Line
Square with four corner discs. (h) White square with four corner discs. (i–l)
Various configurations of the rotated corners. According to Kanizsa’s defini-
tion, amodal presence refers to the completion of part of an object that is not
directly visible because it is covered by another object. In b, we can see a gray
square against a black background behind a gray wall with four apertures. The
amodal contour of the gray square is not as immediately ‘‘visible’’ as the
subjective contour of the Kanizsa figure (a). For a cell selective for horizontal
edges, only the bottom horizontal contour and its neighboring positions
would be placed on the cell’s receptive field in a manner shown in Fig. 2a. For
cells with different orientation preference, each of the stimuli was rotated
accordingly so that the orientation preference of the cell was aligned with the
illusory contour. The five sequences used were: (c, a, c, a), (c, b, c, e), (c, g, c, h),
(m, d, m, f ), and (i, j, k, l), where the symbols stand for the defined above, and
m stands for the gray screen condition. (i, j, k, l) was designed to create the
perception that the four corner discs were rotating independently on screen
in a single trial. Later on, we also tested a sixth sequence, (c, j, c, l).

Fig. 2. a illustrates the spatial relationship between the fixation spot (black
dot), the cell’s receptive field (circle), and the stimulus figure. The cell’s
receptive field was placed in the middle of the illusory contour at the bottom
of the Kanizsa figure, for a cell selective for horizontal orientation. For cells of
other orientations, the stimuli were rotated accordingly so that the contour
was parallel with the preferred orientation of the cell. The stimulus was
presented in ten locations 0.25° apart in successive trials relative to the
receptive field so that the illusory contour was collinear with the ten line
segments as shown in the figure. b illustrates the presentation of the Kanizsa
square sequence, (c, a, c, a), where c is the four circular discs stimulus, and a is
the Kanizsa figure made up of four corner discs.

Fig. 3. a shows the spatial profile of a V1 neuron’s response to the contours
of both real and illusory squares, in a temporal window 100–150 msec after
the square appeared at different spatial placements relative to the receptive
field. This cell responded to the illusory contour when it was at precisely the
same location at which a real contour elicited the maximal response. The cell
also responded significantly better to the illusory contour than to the amodal
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eye movement jitters) is about 1° visual angle when plotted by a small bar. c
compares the temporal evolution of this cell’s response to the illusory contour,
the amodal contour and the various rotated corner disk controls at the
location where the real contour elicited the maximum response. The response
to the illusory contour emerged at about 100 msec after the illusory square
appeared. The cell responded slightly to the amodal and did not respond to
any of the rotated corner discs. d contrasts this cell’s response to the illusory
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square (Fig. 1e ), and gray square (Fig. 1f ). The onset of the response to real
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cells with different orientation preference, each of the stimuli was rotated
accordingly so that the orientation preference of the cell was aligned with the
illusory contour. The five sequences used were: (c, a, c, a), (c, b, c, e), (c, g, c, h),
(m, d, m, f ), and (i, j, k, l), where the symbols stand for the defined above, and
m stands for the gray screen condition. (i, j, k, l) was designed to create the
perception that the four corner discs were rotating independently on screen
in a single trial. Later on, we also tested a sixth sequence, (c, j, c, l).

Fig. 2. a illustrates the spatial relationship between the fixation spot (black
dot), the cell’s receptive field (circle), and the stimulus figure. The cell’s
receptive field was placed in the middle of the illusory contour at the bottom
of the Kanizsa figure, for a cell selective for horizontal orientation. For cells of
other orientations, the stimuli were rotated accordingly so that the contour
was parallel with the preferred orientation of the cell. The stimulus was
presented in ten locations 0.25° apart in successive trials relative to the
receptive field so that the illusory contour was collinear with the ten line
segments as shown in the figure. b illustrates the presentation of the Kanizsa
square sequence, (c, a, c, a), where c is the four circular discs stimulus, and a is
the Kanizsa figure made up of four corner discs.

Fig. 3. a shows the spatial profile of a V1 neuron’s response to the contours
of both real and illusory squares, in a temporal window 100–150 msec after
the square appeared at different spatial placements relative to the receptive
field. This cell responded to the illusory contour when it was at precisely the
same location at which a real contour elicited the maximal response. The cell
also responded significantly better to the illusory contour than to the amodal
contour (t test, p $ 0.003), and did not respond to the rotated corner discs. b
shows the neuron’s response profile to a tiny bar of 0.1° % 0.2° visual angle
placed at different positions along the long-axis of the cell, indicating the
spatial extent of the cell’s receptive field (even when coupled with potential
eye movement jitters) is about 1° visual angle when plotted by a small bar. c
compares the temporal evolution of this cell’s response to the illusory contour,
the amodal contour and the various rotated corner disk controls at the
location where the real contour elicited the maximum response. The response
to the illusory contour emerged at about 100 msec after the illusory square
appeared. The cell responded slightly to the amodal and did not respond to
any of the rotated corner discs. d contrasts this cell’s response to the illusory
contour against its response to the real contours of line square (Fig. 1d), white
square (Fig. 1e ), and gray square (Fig. 1f ). The onset of the response to real
contours was at 45 msec, about 55 msec before the illusory contour response.

1908 " www.pnas.org Lee and Nguyen

eccentricity, the receptive fields of V1 neurons studied ranged
from 0.3° to 1°, whereas those of V2 neurons ranged from 0.7°
to 2°. As we sought to understand how the same stimuli were
processed by the different cortical areas, we did not vary the size
of the test stimuli.

Fig. 3 presents the findings from a V1S neuron. Fig. 3 a and
c show that this cell responded significantly more to the illusory
contour than to the amodal condition (Fig. 1b) or to all of the
rotated corner disk configurations (Fig. 1 i–l). The illusory
contour elicited a response when it was placed at precisely the
same location at which a real contour elicited the maximum
response (Fig. 3a). However, the response to the illusory contour
appeared at 100 msec after the appearance of the Kanizsa
square, as compared with 45 msec for a real square (Fig. 3d).

We characterized a cell’s illusory contour responsiveness, or
its illusory contour response, by the following two modulation
indices: IC1 ! (Ri " Ra)!(Ri # Ra) and IC2 ! (Ri " Rr)!(Ri # Rr),
where Ri is the response to the illusory contour, Ra is the
response to the amodal condition, and Rr is the response to the

Fig. 1. Stimulus set used in the experiment. (a) Kanizsa figure made up of
four corner discs (pac-men). (b) Amodal figure (a gray square in a black
background partially occluded by a foreground surface with four apertures).
(c) Four circular discs. (d) Line square. (e) White square. ( f) Gray square. (g) Line
Square with four corner discs. (h) White square with four corner discs. (i–l)
Various configurations of the rotated corners. According to Kanizsa’s defini-
tion, amodal presence refers to the completion of part of an object that is not
directly visible because it is covered by another object. In b, we can see a gray
square against a black background behind a gray wall with four apertures. The
amodal contour of the gray square is not as immediately ‘‘visible’’ as the
subjective contour of the Kanizsa figure (a). For a cell selective for horizontal
edges, only the bottom horizontal contour and its neighboring positions
would be placed on the cell’s receptive field in a manner shown in Fig. 2a. For
cells with different orientation preference, each of the stimuli was rotated
accordingly so that the orientation preference of the cell was aligned with the
illusory contour. The five sequences used were: (c, a, c, a), (c, b, c, e), (c, g, c, h),
(m, d, m, f ), and (i, j, k, l), where the symbols stand for the defined above, and
m stands for the gray screen condition. (i, j, k, l) was designed to create the
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model. Therefore we aim to derive predictions that are invariant over the structure
of a wide class of hierarchical generative models.

We define a hierarchical generative model in which the stimulus x is a result of a
hierarchical stochastic process (Fig. 1A). High-level complex features, z, define
how low-level features, y, are combined (Fig. 1A). These combinations define
how likely a particular low-level feature is given a set of high-level latent activa-
tions, P(y | z). Activations of low-level features, y, determine the combinations of
pixel intensities (Fig. 1B) and define how likely a particular image is if we assume
that a particular setting of low-level features underlies the image, P(x |y).

Once the prior probability of high-level activations, P(z), is defined, the model
can be specified by formulating the joint distribution of the model variables:

P(x,y, z) = P(x |y) P(y | z) P(z) (S1)

Inference can be performed in this model by establishing the posterior probability
for different variables. We are interested in the posterior of the low-level vari-
able, y, given that we observe the stimulus x. Since we cannot experimentally
access the activities of the variables at the topmost layer, the relevant posterior is
marginalized over them: P(y |x). This can be expanded based on the dependen-
cies of the generative model and marginalizing over z:

P(y |x) = P(x |y) P(y)
P(x)

=

R
P(x |y) P(y | z) P(z) dz

P(x)
(S2)

This form demonstrates how the prior of y is dependent on high-level variables
z, thus we see that intermediate inferences depend not only on the stimulus x but
also on higher level inferences. However, the integral over the prior of the topmost
variable, z, makes this relationship obscure, therefore we intend to obtain a more
transparent form.

We aim for an explicit expression on how y depends on observations, x, and high-
level inferences z. In other words, we want to formulate the distribution over y
conditioned on both the parent and children variables:

P(y |x, z) = P(x |y) P(y | z) P(z)
P(x, z)

=
P(x |y) P(y | z)

P(x | z) (S3)

2

Rearranging Eq. S3 and substituting it into Eq. S2 we obtain

P(y |x) =

R
P(y |x, z) P(x | z) P(z) dz

P(x)
=

=

Z
P(y |x, z) P(z |x) dz (S4)

This is the exactly the form of posterior we used to predict stimulus-dependent
correlation patterns.

Further insgiht can be obtained by assuming a specific simple model structure,
namely that the high-level variable, z, is discrete and that the distribution of high-
level features is described by a categorical distribution. In such a case the integral
in Eq. S4 is simplified to a sum:

P(y |x) =
X

i

P(y |x, zi) P(zi |x) dz, (S5)

which is a weighted sum over possible configurations of z (Fig. 1).

In the visual cortex, activity of neurons at different levels of hierarchy (e.g. V1
and V2) represent different levels of latent variables of an internal model. Fea-
tures these variables are activated by determine the selectivity of the neurons.
During perception inferences are assumed to be made in this hierarchical internal
model, which determines how the mean, variance and correlations change when
the stimulus changes. Critically, the term P(y |x, zi) is a product of two terms
conveying bottom-up and top-down information-respectively:

P(y |x, zi) = P(y |x) P(y | zi) . (S6)

Both of the terms contribute to setting the mean activations of the low-level neu-
rons, y. The correlation between a pair of low level neurons, y1 and y2 does
not depend on the stimulus identitiy in a large class of generative models, thus
the first term does not contribute to stimulus-dependent correlations. The second
term, however, determines how the two low-level variables covary in the context
of one value of the high-level variable or the other. If high-level variables are
identified with texture-sensitive neurons in V2 then it becomes clear that differ-
ent textures imply different covariations between low-level feuatures represented
in the lower layer, V1. Thus, such a scheme predicts that correlations will be
stimulus-dependent if different stimuli induce different configurations of high-
level variables being active.
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model. Therefore we aim to derive predictions that are invariant over the structure
of a wide class of hierarchical generative models.

We define a hierarchical generative model in which the stimulus x is a result of a
hierarchical stochastic process (Fig. 1A). High-level complex features, z, define
how low-level features, y, are combined (Fig. 1A). These combinations define
how likely a particular low-level feature is given a set of high-level latent activa-
tions, P(y | z). Activations of low-level features, y, determine the combinations of
pixel intensities (Fig. 1B) and define how likely a particular image is if we assume
that a particular setting of low-level features underlies the image, P(x |y).

Once the prior probability of high-level activations, P(z), is defined, the model
can be specified by formulating the joint distribution of the model variables:

P(x,y, z) = P(x |y) P(y | z) P(z) (S1)

Inference can be performed in this model by establishing the posterior probability
for different variables. We are interested in the posterior of the low-level vari-
able, y, given that we observe the stimulus x. Since we cannot experimentally
access the activities of the variables at the topmost layer, the relevant posterior is
marginalized over them: P(y |x). This can be expanded based on the dependen-
cies of the generative model and marginalizing over z:

P(y |x) = P(x |y) P(y)
P(x)

=

R
P(x |y) P(y | z) P(z) dz

P(x)
(S2)

This form demonstrates how the prior of y is dependent on high-level variables
z, thus we see that intermediate inferences depend not only on the stimulus x but
also on higher level inferences. However, the integral over the prior of the topmost
variable, z, makes this relationship obscure, therefore we intend to obtain a more
transparent form.

We aim for an explicit expression on how y depends on observations, x, and high-
level inferences z. In other words, we want to formulate the distribution over y
conditioned on both the parent and children variables:

P(y |x, z) = P(x |y) P(y | z) P(z)
P(x, z)

=
P(x |y) P(y | z)

P(x | z) (S3)

2

Rearranging Eq. S3 and substituting it into Eq. S2 we obtain

P(y |x) =

R
P(y |x, z) P(x | z) P(z) dz

P(x)
=

=

Z
P(y |x, z) P(z |x) dz (S4)

This is the exactly the form of posterior we used to predict stimulus-dependent
correlation patterns.

Further insgiht can be obtained by assuming a specific simple model structure,
namely that the high-level variable, z, is discrete and that the distribution of high-
level features is described by a categorical distribution. In such a case the integral
in Eq. S4 is simplified to a sum:

P(y |x) =
X

i

P(y |x, zi) P(zi |x) dz, (S5)

which is a weighted sum over possible configurations of z (Fig. 1).

In the visual cortex, activity of neurons at different levels of hierarchy (e.g. V1
and V2) represent different levels of latent variables of an internal model. Fea-
tures these variables are activated by determine the selectivity of the neurons.
During perception inferences are assumed to be made in this hierarchical internal
model, which determines how the mean, variance and correlations change when
the stimulus changes. Critically, the term P(y |x, zi) is a product of two terms
conveying bottom-up and top-down information-respectively:

P(y |x, zi) = P(y |x) P(y | zi) . (S6)

Both of the terms contribute to setting the mean activations of the low-level neu-
rons, y. The correlation between a pair of low level neurons, y1 and y2 does
not depend on the stimulus identitiy in a large class of generative models, thus
the first term does not contribute to stimulus-dependent correlations. The second
term, however, determines how the two low-level variables covary in the context
of one value of the high-level variable or the other. If high-level variables are
identified with texture-sensitive neurons in V2 then it becomes clear that differ-
ent textures imply different covariations between low-level feuatures represented
in the lower layer, V1. Thus, such a scheme predicts that correlations will be
stimulus-dependent if different stimuli induce different configurations of high-
level variables being active.
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model. Therefore we aim to derive predictions that are invariant over the structure
of a wide class of hierarchical generative models.

We define a hierarchical generative model in which the stimulus x is a result of a
hierarchical stochastic process (Fig. 1A). High-level complex features, z, define
how low-level features, y, are combined (Fig. 1A). These combinations define
how likely a particular low-level feature is given a set of high-level latent activa-
tions, P(y | z). Activations of low-level features, y, determine the combinations of
pixel intensities (Fig. 1B) and define how likely a particular image is if we assume
that a particular setting of low-level features underlies the image, P(x |y).

Once the prior probability of high-level activations, P(z), is defined, the model
can be specified by formulating the joint distribution of the model variables:

P(x,y, z) = P(x |y) P(y | z) P(z) (S1)

Inference can be performed in this model by establishing the posterior probability
for different variables. We are interested in the posterior of the low-level vari-
able, y, given that we observe the stimulus x. Since we cannot experimentally
access the activities of the variables at the topmost layer, the relevant posterior is
marginalized over them: P(y |x). This can be expanded based on the dependen-
cies of the generative model and marginalizing over z:

P(y |x) = P(x |y) P(y)
P(x)

=

R
P(x |y) P(y | z) P(z) dz

P(x)
(S2)

This form demonstrates how the prior of y is dependent on high-level variables
z, thus we see that intermediate inferences depend not only on the stimulus x but
also on higher level inferences. However, the integral over the prior of the topmost
variable, z, makes this relationship obscure, therefore we intend to obtain a more
transparent form.

We aim for an explicit expression on how y depends on observations, x, and high-
level inferences z. In other words, we want to formulate the distribution over y
conditioned on both the parent and children variables:

P(y |x, z) = P(x |y) P(y | z) P(z)
P(x, z)

=
P(x |y) P(y | z)

P(x | z) (S3)

2

Rearranging Eq. S3 and substituting it into Eq. S2 we obtain

P(y |x) =

R
P(y |x, z) P(x | z) P(z) dz

P(x)
=

=

Z
P(y |x, z) P(z |x) dz (S4)

This is the exactly the form of posterior we used to predict stimulus-dependent
correlation patterns.

Further insgiht can be obtained by assuming a specific simple model structure,
namely that the high-level variable, z, is discrete and that the distribution of high-
level features is described by a categorical distribution. In such a case the integral
in Eq. S4 is simplified to a sum:

P(y |x) =
X

i

P(y |x, zi) P(zi |x) dz, (S5)

which is a weighted sum over possible configurations of z (Fig. 1).

In the visual cortex, activity of neurons at different levels of hierarchy (e.g. V1
and V2) represent different levels of latent variables of an internal model. Fea-
tures these variables are activated by determine the selectivity of the neurons.
During perception inferences are assumed to be made in this hierarchical internal
model, which determines how the mean, variance and correlations change when
the stimulus changes. Critically, the term P(y |x, zi) is a product of two terms
conveying bottom-up and top-down information-respectively:

P(y |x, zi) = P(y |x) P(y | zi) . (S6)

Both of the terms contribute to setting the mean activations of the low-level neu-
rons, y. The correlation between a pair of low level neurons, y1 and y2 does
not depend on the stimulus identitiy in a large class of generative models, thus
the first term does not contribute to stimulus-dependent correlations. The second
term, however, determines how the two low-level variables covary in the context
of one value of the high-level variable or the other. If high-level variables are
identified with texture-sensitive neurons in V2 then it becomes clear that differ-
ent textures imply different covariations between low-level feuatures represented
in the lower layer, V1. Thus, such a scheme predicts that correlations will be
stimulus-dependent if different stimuli induce different configurations of high-
level variables being active.
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model. Therefore we aim to derive predictions that are invariant over the structure
of a wide class of hierarchical generative models.

We define a hierarchical generative model in which the stimulus x is a result of a
hierarchical stochastic process (Fig. 1A). High-level complex features, z, define
how low-level features, y, are combined (Fig. 1A). These combinations define
how likely a particular low-level feature is given a set of high-level latent activa-
tions, P(y | z). Activations of low-level features, y, determine the combinations of
pixel intensities (Fig. 1B) and define how likely a particular image is if we assume
that a particular setting of low-level features underlies the image, P(x |y).

Once the prior probability of high-level activations, P(z), is defined, the model
can be specified by formulating the joint distribution of the model variables:

P(x,y, z) = P(x |y) P(y | z) P(z) (S1)

Inference can be performed in this model by establishing the posterior probability
for different variables. We are interested in the posterior of the low-level vari-
able, y, given that we observe the stimulus x. Since we cannot experimentally
access the activities of the variables at the topmost layer, the relevant posterior is
marginalized over them: P(y |x). This can be expanded based on the dependen-
cies of the generative model and marginalizing over z:

P(y |x) = P(x |y) P(y)
P(x)

=

R
P(x |y) P(y | z) P(z) dz

P(x)
(S2)

This form demonstrates how the prior of y is dependent on high-level variables
z, thus we see that intermediate inferences depend not only on the stimulus x but
also on higher level inferences. However, the integral over the prior of the topmost
variable, z, makes this relationship obscure, therefore we intend to obtain a more
transparent form.

We aim for an explicit expression on how y depends on observations, x, and high-
level inferences z. In other words, we want to formulate the distribution over y
conditioned on both the parent and children variables:

P(y |x, z) = P(x |y) P(y | z) P(z)
P(x, z)

=
P(x |y) P(y | z)

P(x | z) (S3)

2

Rearranging Eq. S3 and substituting it into Eq. S2 we obtain

P(y |x) =

R
P(y |x, z) P(x | z) P(z) dz

P(x)
=

=

Z
P(y |x, z) P(z |x) dz (S4)

This is the exactly the form of posterior we used to predict stimulus-dependent
correlation patterns.

Further insgiht can be obtained by assuming a specific simple model structure,
namely that the high-level variable, z, is discrete and that the distribution of high-
level features is described by a categorical distribution. In such a case the integral
in Eq. S4 is simplified to a sum:

P(y |x) =
X

i

P(y |x, zi) P(zi |x) dz, (S5)

which is a weighted sum over possible configurations of z (Fig. 1).

In the visual cortex, activity of neurons at different levels of hierarchy (e.g. V1
and V2) represent different levels of latent variables of an internal model. Fea-
tures these variables are activated by determine the selectivity of the neurons.
During perception inferences are assumed to be made in this hierarchical internal
model, which determines how the mean, variance and correlations change when
the stimulus changes. Critically, the term P(y |x, zi) is a product of two terms
conveying bottom-up and top-down information-respectively:

P(y |x, zi) = P(y |x) P(y | zi) . (S6)

Both of the terms contribute to setting the mean activations of the low-level neu-
rons, y. The correlation between a pair of low level neurons, y1 and y2 does
not depend on the stimulus identitiy in a large class of generative models, thus
the first term does not contribute to stimulus-dependent correlations. The second
term, however, determines how the two low-level variables covary in the context
of one value of the high-level variable or the other. If high-level variables are
identified with texture-sensitive neurons in V2 then it becomes clear that differ-
ent textures imply different covariations between low-level feuatures represented
in the lower layer, V1. Thus, such a scheme predicts that correlations will be
stimulus-dependent if different stimuli induce different configurations of high-
level variables being active.
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model. Therefore we aim to derive predictions that are invariant over the structure
of a wide class of hierarchical generative models.

We define a hierarchical generative model in which the stimulus x is a result of a
hierarchical stochastic process (Fig. 1A). High-level complex features, z, define
how low-level features, y, are combined (Fig. 1A). These combinations define
how likely a particular low-level feature is given a set of high-level latent activa-
tions, P(y | z). Activations of low-level features, y, determine the combinations of
pixel intensities (Fig. 1B) and define how likely a particular image is if we assume
that a particular setting of low-level features underlies the image, P(x |y).

Once the prior probability of high-level activations, P(z), is defined, the model
can be specified by formulating the joint distribution of the model variables:

P(x,y, z) = P(x |y) P(y | z) P(z) (S1)

Inference can be performed in this model by establishing the posterior probability
for different variables. We are interested in the posterior of the low-level vari-
able, y, given that we observe the stimulus x. Since we cannot experimentally
access the activities of the variables at the topmost layer, the relevant posterior is
marginalized over them: P(y |x). This can be expanded based on the dependen-
cies of the generative model and marginalizing over z:

P(y |x) = P(x |y) P(y)
P(x)

=

R
P(x |y) P(y | z) P(z) dz

P(x)
(S2)

This form demonstrates how the prior of y is dependent on high-level variables
z, thus we see that intermediate inferences depend not only on the stimulus x but
also on higher level inferences. However, the integral over the prior of the topmost
variable, z, makes this relationship obscure, therefore we intend to obtain a more
transparent form.

We aim for an explicit expression on how y depends on observations, x, and high-
level inferences z. In other words, we want to formulate the distribution over y
conditioned on both the parent and children variables:

P(y |x, z) = P(x |y) P(y | z) P(z)
P(x, z)

=
P(x |y) P(y | z)

P(x | z) (S3)

2

Rearranging Eq. S3 and substituting it into Eq. S2 we obtain

P(y |x) =

R
P(y |x, z) P(x | z) P(z) dz

P(x)
=

=

Z
P(y |x, z) P(z |x) dz (S4)

This is the exactly the form of posterior we used to predict stimulus-dependent
correlation patterns.

Further insgiht can be obtained by assuming a specific simple model structure,
namely that the high-level variable, z, is discrete and that the distribution of high-
level features is described by a categorical distribution. In such a case the integral
in Eq. S4 is simplified to a sum:

P(y |x) =
X

i

P(y |x, zi) P(zi |x) dz, (S5)

which is a weighted sum over possible configurations of z (Fig. 1).

In the visual cortex, activity of neurons at different levels of hierarchy (e.g. V1
and V2) represent different levels of latent variables of an internal model. Fea-
tures these variables are activated by determine the selectivity of the neurons.
During perception inferences are assumed to be made in this hierarchical internal
model, which determines how the mean, variance and correlations change when
the stimulus changes. Critically, the term P(y |x, zi) is a product of two terms
conveying bottom-up and top-down information-respectively:

P(y |x, zi) = P(y |x) P(y | zi) . (S6)

Both of the terms contribute to setting the mean activations of the low-level neu-
rons, y. The correlation between a pair of low level neurons, y1 and y2 does
not depend on the stimulus identitiy in a large class of generative models, thus
the first term does not contribute to stimulus-dependent correlations. The second
term, however, determines how the two low-level variables covary in the context
of one value of the high-level variable or the other. If high-level variables are
identified with texture-sensitive neurons in V2 then it becomes clear that differ-
ent textures imply different covariations between low-level feuatures represented
in the lower layer, V1. Thus, such a scheme predicts that correlations will be
stimulus-dependent if different stimuli induce different configurations of high-
level variables being active.
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model. Therefore we aim to derive predictions that are invariant over the structure
of a wide class of hierarchical generative models.

We define a hierarchical generative model in which the stimulus x is a result of a
hierarchical stochastic process (Fig. 1A). High-level complex features, z, define
how low-level features, y, are combined (Fig. 1A). These combinations define
how likely a particular low-level feature is given a set of high-level latent activa-
tions, P(y | z). Activations of low-level features, y, determine the combinations of
pixel intensities (Fig. 1B) and define how likely a particular image is if we assume
that a particular setting of low-level features underlies the image, P(x |y).

Once the prior probability of high-level activations, P(z), is defined, the model
can be specified by formulating the joint distribution of the model variables:

P(x,y, z) = P(x |y) P(y | z) P(z) (S1)

Inference can be performed in this model by establishing the posterior probability
for different variables. We are interested in the posterior of the low-level vari-
able, y, given that we observe the stimulus x. Since we cannot experimentally
access the activities of the variables at the topmost layer, the relevant posterior is
marginalized over them: P(y |x). This can be expanded based on the dependen-
cies of the generative model and marginalizing over z:

P(y |x) = P(x |y) P(y)
P(x)

=

R
P(x |y) P(y | z) P(z) dz

P(x)
(S2)

This form demonstrates how the prior of y is dependent on high-level variables
z, thus we see that intermediate inferences depend not only on the stimulus x but
also on higher level inferences. However, the integral over the prior of the topmost
variable, z, makes this relationship obscure, therefore we intend to obtain a more
transparent form.

We aim for an explicit expression on how y depends on observations, x, and high-
level inferences z. In other words, we want to formulate the distribution over y
conditioned on both the parent and children variables:

P(y |x, z) = P(x |y) P(y | z) P(z)
P(x, z)

=
P(x |y) P(y | z)

P(x | z) (S3)

2

Rearranging Eq. S3 and substituting it into Eq. S2 we obtain

P(y |x) =

R
P(y |x, z) P(x | z) P(z) dz

P(x)
=

=

Z
P(y |x, z) P(z |x) dz (S4)

This is the exactly the form of posterior we used to predict stimulus-dependent
correlation patterns.

Further insgiht can be obtained by assuming a specific simple model structure,
namely that the high-level variable, z, is discrete and that the distribution of high-
level features is described by a categorical distribution. In such a case the integral
in Eq. S4 is simplified to a sum:

P(y |x) =
X

i

P(y |x, zi) P(zi |x) dz, (S5)

which is a weighted sum over possible configurations of z (Fig. 1).

In the visual cortex, activity of neurons at different levels of hierarchy (e.g. V1
and V2) represent different levels of latent variables of an internal model. Fea-
tures these variables are activated by determine the selectivity of the neurons.
During perception inferences are assumed to be made in this hierarchical internal
model, which determines how the mean, variance and correlations change when
the stimulus changes. Critically, the term P(y |x, zi) is a product of two terms
conveying bottom-up and top-down information-respectively:

P(y |x, zi) = P(y |x) P(y | zi) . (S6)

Both of the terms contribute to setting the mean activations of the low-level neu-
rons, y. The correlation between a pair of low level neurons, y1 and y2 does
not depend on the stimulus identitiy in a large class of generative models, thus
the first term does not contribute to stimulus-dependent correlations. The second
term, however, determines how the two low-level variables covary in the context
of one value of the high-level variable or the other. If high-level variables are
identified with texture-sensitive neurons in V2 then it becomes clear that differ-
ent textures imply different covariations between low-level feuatures represented
in the lower layer, V1. Thus, such a scheme predicts that correlations will be
stimulus-dependent if different stimuli induce different configurations of high-
level variables being active.
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Figure 5. Comparison of stimulus-specificity of correlation patterns induced by different stimulus 
structures. a, A set of natural image patches are used as a reference condition and a set of 
synthetic image patches generated from a V1 model of images is used in the second condition. 
b, Stimulus-specificity of firing rate responses (top panel) and spike count correlation patterns 
(bottom panel) in the original (unmatched) data. While correlations show higher specificity for 
natural images, specificity of firing rate responses is also higher in the reference condition. 
Shaded areas show the extrapolated estimate of within-stimulus dissimilarity for both firing rates 
and correlations (see Experimental Procedures).  c, Contrastive rate matching eliminates 
stimulus-specificity of firing rate responses, but the residual dissimilarity of spike count 
correlations is still significantly higher for natural images than for LL-synthetic stimuli. d, Raster 
marginal models (RMMs) fitted to the spike trains recorded under natural image stimulation 
condition and under LL-synthetic stimulus stimulation condition in an example session (top and 
middle, respectively). Distributions of dissimilarities are calculated between correlation matrices 
sampled from RMMs obtained from the population activities recorded for individual stimuli. Black 
triangles mark the mean dissimilarity calculated from the electrophysiological data. Bottom: 
Likelihoods of recorded dissimilarity under the RMM model in all of the sessions in the natural 
and LL-synthetic conditions (colors match those of the top and middle panels). Dissimilarity 
indices of 500 pairs of correlation matrices sampled from the RMM model were used to assess 
the likelihood of the recorded data. Stimulus-dependence of correlation matrices under natural 
image stimulation could not be explained by an RMM model in any of the recorded sessions. 
Dissimilarity determined for LL-synthetic stimuli was significantly different from the RMM model 
in five out of nine sessions. 
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Figure 6. Comparison of stimulus-specificity of correlation patterns evoked by stimuli with 
different levels of statistical structure. a, condition A, a set of synthetic image patches in which 
filter co-occurrences define a texture structure (HL-synthetic stimuli) , condition B , a set of 
synthetic image patches generated from a V1 model of images (LL-synthetic stimuli). b, 
Stimulus-specificity of firing rate responses (top panel) and spike count correlation patterns 
(bottom panel) in the original (unmatched) data. While correlations show higher specificity for 
HL-synthetic images, specificity of firing rate responses is also higher in the first condition. c, 
Firing and correlation dissimilarities after applying the contrastive rate matching procedure. 
Contrastive rate matching eliminates stimulus-specificity of firing rate responses, but the 
residual dissimilarity of spike count correlations is still significantly higher for HL-synthetic stimuli 
than that for LL-synthetic stimuli. 
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structures. a, A set of natural image patches are used as a reference condition and a set of 
synthetic image patches generated from a V1 model of images is used in the second condition. 
b, Stimulus-specificity of firing rate responses (top panel) and spike count correlation patterns 
(bottom panel) in the original (unmatched) data. While correlations show higher specificity for 
natural images, specificity of firing rate responses is also higher in the reference condition. 
Shaded areas show the extrapolated estimate of within-stimulus dissimilarity for both firing rates 
and correlations (see Experimental Procedures).  c, Contrastive rate matching eliminates 
stimulus-specificity of firing rate responses, but the residual dissimilarity of spike count 
correlations is still significantly higher for natural images than for LL-synthetic stimuli. d, Raster 
marginal models (RMMs) fitted to the spike trains recorded under natural image stimulation 
condition and under LL-synthetic stimulus stimulation condition in an example session (top and 
middle, respectively). Distributions of dissimilarities are calculated between correlation matrices 
sampled from RMMs obtained from the population activities recorded for individual stimuli. Black 
triangles mark the mean dissimilarity calculated from the electrophysiological data. Bottom: 
Likelihoods of recorded dissimilarity under the RMM model in all of the sessions in the natural 
and LL-synthetic conditions (colors match those of the top and middle panels). Dissimilarity 
indices of 500 pairs of correlation matrices sampled from the RMM model were used to assess 
the likelihood of the recorded data. Stimulus-dependence of correlation matrices under natural 
image stimulation could not be explained by an RMM model in any of the recorded sessions. 
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