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Komputációs kritériumok: 

• Hiteles rekonstrukció  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• Kis “energiafelhasználás (kevés szimultán aktiv neuron) 
további költség a kód “ritkasága”: 
 
 
S a Gauss-nál nagyobb kurtózissal bíró eloszlás 
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A kialakult bázis:
• irányított
• térbeli sávszűrést valósít meg
• lokalizált

Olshausen & Field ‘96
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allows a system with limited response
range to handle a wider dynamic range of
input. Divisive normalization achieves
this goal, producing sigmoidal con-
trast–response functions similar to those
seen in neurons. In addition, it seems
advantageous for tuning curves in stim-
ulus parameters such as orientation to
retain their shape at different contrasts,
even in the presence of response satura-
tion20. Previous models have accom-
plished this by computing a normalization
signal that is independent of parameters
such as orientation (achieved with a uni-
formly weighted sum over the entire neur-
al population). A consequence of this
design is that the models can account for
the response suppression that occurs, for example, when a grat-
ing of non-optimal orientation is superimposed on a stimulus.

Model simulations versus physiology
We compared our model with electrophysiological measurements
from single neurons. To simulate an experiment, we chose a pri-
mary filter and a set of neighboring filters that would interact
with this primary filter. We pre-computed the optimal normal-
ization weights for an ensemble of natural signals (see Methods).
We then simulated each experiment, holding all parameters of
the model fixed, by computing the normalized responses of the
primary filter to the experimental stimuli. We compared these
responses to the physiologically measured average firing rates of
neurons. Our extended normalization model, with all parame-
ters chosen to optimize statistical independence of responses,
accounted for those nonlinear behaviors in V1 neurons previ-
ously modeled with divisive normalization (see above). Figure 5
shows data and model simulations demonstrating preservation
of orientation tuning curves and cross-orientation inhibition.

Our model also accounted for nonlinear behaviors not pre-
viously modeled using normalization. Figure 6a shows data from
an experiment in which an optimal sinusoidal grating stimulus
was placed inside the classical receptive field of a neuron in pri-
mary visual cortex of a macaque monkey24. A mask grating was
placed in an annular region surrounding the classical receptive
field. Each curve in the figure indicates the response as a func-

Fig. 3. Examples of variance dependency in
natural signals. (a) Responses of two filters to
several different signals. Dependency is strong
for natural signals, but is negligible for white
noise. Filters as in Fig. 1. (b) Responses of dif-
ferent pairs of filters to a fixed natural signal.
The strength of the variance dependency
depends on the filter pair. For the image, the
red × represents a fixed spatial location on
the retina. The ordinate response is always
computed with a vertical filter, and the
abscissa response is computed with a vertical
filter (shifted 4 pixels), vertical filter (shifted
12 pixels) and horizontal filter (shifted 12 pix-
els). For the sound, the red × represents a
fixed time. Temporal frequency of ordinate fil-
ter is 2000 Hz. Temporal frequencies of
abscissa filter are 2000 Hz (shifted 9 ms in
time), 2840 Hz (shifted 9 ms) and 4019 Hz
(shifted 9 ms).

tion of the center contrast for a particular surround contrast. The
sigmoidal shape of the curves results from the squaring nonlin-
earity and the normalization. Presentation of the mask grating
alone does not elicit a response from the neuron, but its presence
suppresses the responses to the center grating. Specifically, the
contrast response curves are shifted to the right (on a log axis),
indicative of a divisive gain change. When the mask orientation is
parallel to the center, this shift is much larger than when the mask
orientation is orthogonal to the center (Fig. 6b).

Our model exhibits similar behavior (Fig. 6a and b), which
is due to suppressive weighting of neighboring model neurons
with the same orientation preference that is stronger than that
of neurons with perpendicular orientation preference (see also
ref. 25). This weighting is determined by the statistics of our
image ensemble, and is due to the increased likelihood that adja-
cent regions in natural images have similar rather than orthogo-
nal orientations. For example, oriented structures in images (such
as edges of objects) tend to extend along smooth contours, yield-
ing strong responses in linear filters that are separated from each
other spatially, but lying along the same contour (see also refs.
26, 27). This behavior would not be observed in previous nor-
malization models, because the parallel and orthogonal surround
stimuli would produce the same normalization signal.

An analogous effect is seen in the auditory system. Figure 6
shows example data recorded from a cat auditory nerve fiber, in
which an optimal sinusoidal tone stimulus is combined with a
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stimuli would produce the same normalization signal.

An analogous effect is seen in the auditory system. Figure 6
shows example data recorded from a cat auditory nerve fiber, in
which an optimal sinusoidal tone stimulus is combined with a
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allows a system with limited response
range to handle a wider dynamic range of
input. Divisive normalization achieves
this goal, producing sigmoidal con-
trast–response functions similar to those
seen in neurons. In addition, it seems
advantageous for tuning curves in stim-
ulus parameters such as orientation to
retain their shape at different contrasts,
even in the presence of response satura-
tion20. Previous models have accom-
plished this by computing a normalization
signal that is independent of parameters
such as orientation (achieved with a uni-
formly weighted sum over the entire neur-
al population). A consequence of this
design is that the models can account for
the response suppression that occurs, for example, when a grat-
ing of non-optimal orientation is superimposed on a stimulus.

Model simulations versus physiology
We compared our model with electrophysiological measurements
from single neurons. To simulate an experiment, we chose a pri-
mary filter and a set of neighboring filters that would interact
with this primary filter. We pre-computed the optimal normal-
ization weights for an ensemble of natural signals (see Methods).
We then simulated each experiment, holding all parameters of
the model fixed, by computing the normalized responses of the
primary filter to the experimental stimuli. We compared these
responses to the physiologically measured average firing rates of
neurons. Our extended normalization model, with all parame-
ters chosen to optimize statistical independence of responses,
accounted for those nonlinear behaviors in V1 neurons previ-
ously modeled with divisive normalization (see above). Figure 5
shows data and model simulations demonstrating preservation
of orientation tuning curves and cross-orientation inhibition.

Our model also accounted for nonlinear behaviors not pre-
viously modeled using normalization. Figure 6a shows data from
an experiment in which an optimal sinusoidal grating stimulus
was placed inside the classical receptive field of a neuron in pri-
mary visual cortex of a macaque monkey24. A mask grating was
placed in an annular region surrounding the classical receptive
field. Each curve in the figure indicates the response as a func-

Fig. 3. Examples of variance dependency in
natural signals. (a) Responses of two filters to
several different signals. Dependency is strong
for natural signals, but is negligible for white
noise. Filters as in Fig. 1. (b) Responses of dif-
ferent pairs of filters to a fixed natural signal.
The strength of the variance dependency
depends on the filter pair. For the image, the
red × represents a fixed spatial location on
the retina. The ordinate response is always
computed with a vertical filter, and the
abscissa response is computed with a vertical
filter (shifted 4 pixels), vertical filter (shifted
12 pixels) and horizontal filter (shifted 12 pix-
els). For the sound, the red × represents a
fixed time. Temporal frequency of ordinate fil-
ter is 2000 Hz. Temporal frequencies of
abscissa filter are 2000 Hz (shifted 9 ms in
time), 2840 Hz (shifted 9 ms) and 4019 Hz
(shifted 9 ms).

tion of the center contrast for a particular surround contrast. The
sigmoidal shape of the curves results from the squaring nonlin-
earity and the normalization. Presentation of the mask grating
alone does not elicit a response from the neuron, but its presence
suppresses the responses to the center grating. Specifically, the
contrast response curves are shifted to the right (on a log axis),
indicative of a divisive gain change. When the mask orientation is
parallel to the center, this shift is much larger than when the mask
orientation is orthogonal to the center (Fig. 6b).

Our model exhibits similar behavior (Fig. 6a and b), which
is due to suppressive weighting of neighboring model neurons
with the same orientation preference that is stronger than that
of neurons with perpendicular orientation preference (see also
ref. 25). This weighting is determined by the statistics of our
image ensemble, and is due to the increased likelihood that adja-
cent regions in natural images have similar rather than orthogo-
nal orientations. For example, oriented structures in images (such
as edges of objects) tend to extend along smooth contours, yield-
ing strong responses in linear filters that are separated from each
other spatially, but lying along the same contour (see also refs.
26, 27). This behavior would not be observed in previous nor-
malization models, because the parallel and orthogonal surround
stimuli would produce the same normalization signal.

An analogous effect is seen in the auditory system. Figure 6
shows example data recorded from a cat auditory nerve fiber, in
which an optimal sinusoidal tone stimulus is combined with a
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allows a system with limited response
range to handle a wider dynamic range of
input. Divisive normalization achieves
this goal, producing sigmoidal con-
trast–response functions similar to those
seen in neurons. In addition, it seems
advantageous for tuning curves in stim-
ulus parameters such as orientation to
retain their shape at different contrasts,
even in the presence of response satura-
tion20. Previous models have accom-
plished this by computing a normalization
signal that is independent of parameters
such as orientation (achieved with a uni-
formly weighted sum over the entire neur-
al population). A consequence of this
design is that the models can account for
the response suppression that occurs, for example, when a grat-
ing of non-optimal orientation is superimposed on a stimulus.

Model simulations versus physiology
We compared our model with electrophysiological measurements
from single neurons. To simulate an experiment, we chose a pri-
mary filter and a set of neighboring filters that would interact
with this primary filter. We pre-computed the optimal normal-
ization weights for an ensemble of natural signals (see Methods).
We then simulated each experiment, holding all parameters of
the model fixed, by computing the normalized responses of the
primary filter to the experimental stimuli. We compared these
responses to the physiologically measured average firing rates of
neurons. Our extended normalization model, with all parame-
ters chosen to optimize statistical independence of responses,
accounted for those nonlinear behaviors in V1 neurons previ-
ously modeled with divisive normalization (see above). Figure 5
shows data and model simulations demonstrating preservation
of orientation tuning curves and cross-orientation inhibition.

Our model also accounted for nonlinear behaviors not pre-
viously modeled using normalization. Figure 6a shows data from
an experiment in which an optimal sinusoidal grating stimulus
was placed inside the classical receptive field of a neuron in pri-
mary visual cortex of a macaque monkey24. A mask grating was
placed in an annular region surrounding the classical receptive
field. Each curve in the figure indicates the response as a func-

Fig. 3. Examples of variance dependency in
natural signals. (a) Responses of two filters to
several different signals. Dependency is strong
for natural signals, but is negligible for white
noise. Filters as in Fig. 1. (b) Responses of dif-
ferent pairs of filters to a fixed natural signal.
The strength of the variance dependency
depends on the filter pair. For the image, the
red × represents a fixed spatial location on
the retina. The ordinate response is always
computed with a vertical filter, and the
abscissa response is computed with a vertical
filter (shifted 4 pixels), vertical filter (shifted
12 pixels) and horizontal filter (shifted 12 pix-
els). For the sound, the red × represents a
fixed time. Temporal frequency of ordinate fil-
ter is 2000 Hz. Temporal frequencies of
abscissa filter are 2000 Hz (shifted 9 ms in
time), 2840 Hz (shifted 9 ms) and 4019 Hz
(shifted 9 ms).

tion of the center contrast for a particular surround contrast. The
sigmoidal shape of the curves results from the squaring nonlin-
earity and the normalization. Presentation of the mask grating
alone does not elicit a response from the neuron, but its presence
suppresses the responses to the center grating. Specifically, the
contrast response curves are shifted to the right (on a log axis),
indicative of a divisive gain change. When the mask orientation is
parallel to the center, this shift is much larger than when the mask
orientation is orthogonal to the center (Fig. 6b).

Our model exhibits similar behavior (Fig. 6a and b), which
is due to suppressive weighting of neighboring model neurons
with the same orientation preference that is stronger than that
of neurons with perpendicular orientation preference (see also
ref. 25). This weighting is determined by the statistics of our
image ensemble, and is due to the increased likelihood that adja-
cent regions in natural images have similar rather than orthogo-
nal orientations. For example, oriented structures in images (such
as edges of objects) tend to extend along smooth contours, yield-
ing strong responses in linear filters that are separated from each
other spatially, but lying along the same contour (see also refs.
26, 27). This behavior would not be observed in previous nor-
malization models, because the parallel and orthogonal surround
stimuli would produce the same normalization signal.

An analogous effect is seen in the auditory system. Figure 6
shows example data recorded from a cat auditory nerve fiber, in
which an optimal sinusoidal tone stimulus is combined with a
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:

P(x|y) = N
�
x;Ay, �2

xI
�

(1)

where A is the mixing matrix (column i containing the ‘projective field’ of yi), �2
x is the variance

of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.

Latent variables y are modelled as the (deterministic) product of a
u z

y

x

Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:

P(x|y) = N
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(1)

where A is the mixing matrix (column i containing the ‘projective field’ of yi), �2
x is the variance

of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.

Latent variables y are modelled as the (deterministic) product of a
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Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
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P(x|y) = N
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(1)

where A is the mixing matrix (column i containing the ‘projective field’ of yi), �2
x is the variance

of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.
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the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
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where A is the mixing matrix (column i containing the ‘projective field’ of yi), �2
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of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.

Latent variables y are modelled as the (deterministic) product of a
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Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:

P(x|y) = N
�
x;Ay, �2

xI
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(1)

where A is the mixing matrix (column i containing the ‘projective field’ of yi), �2
x is the variance

of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.

Latent variables y are modelled as the (deterministic) product of a
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Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.
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where A is the mixing matrix (column i containing the ‘projective field’ of yi), �2
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of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
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P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
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where A is the mixing matrix (column i containing the ‘projective field’ of yi), �2
x is the variance

of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.
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non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:

P(x|y) = N
�
x;Ay, �2
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(1)

where A is the mixing matrix (column i containing the ‘projective field’ of yi), �2
x is the variance

of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.

Latent variables y are modelled as the (deterministic) product of a
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Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:

P(x|y) = N
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x;Ay, �2
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(1)

where A is the mixing matrix (column i containing the ‘projective field’ of yi), �2
x is the variance

of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.

Latent variables y are modelled as the (deterministic) product of a
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Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values

2

image

1

First-order statistics (pixel histograms)

… 

linear features
2 N

a1 feature1 + a2 feature2 + . . .+ aN featureN + noiseimage =

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Gaussian Scale Mixtures

 21

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:
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(1)

where A is the mixing matrix (column i containing the ‘projective field’ of yi), �2
x is the variance

of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.
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the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:
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where A is the mixing matrix (column i containing the ‘projective field’ of yi), �2
x is the variance

of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.
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the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values
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large number of variables, such as those describing the position, pose, colour, and other attributes of
multiple objects constituting a visual scene15,16.

Indeed, a powerful class of models have been developed that relates the activity of visual cortical
neurons to probabilistic inference under a statistical model of natural images containing a high num-
ber of latent variables17–20. Ironically, though, these models have almost exclusively concentrated
on maximum a posteriori inference (but see Refs. 21,22) which by definition does not allow for
representing uncertainty in one’s inferences. As a result, while these models have successfully ac-
counted for a number of receptive field and tuning curve properties of visual cortical cells, they did
not capture any aspects of neural variability.

We propose that neural activities represent samples from the (posterior) distribution that results from
Bayesian inference. That is, at any moment in time, the vector of activity patterns in a population
of neurons represents a sample from a multivariate distribution over the high-dimensional space
spanned by multiple latent variables. The idea that the brain uses samples to represent posterior
distributions have been put forward to interpret a diverse set of psychological data23–27, but its
ramifications for neural data have only been minimally explored so far16,22.

We spell out the sampling hypothesis in the context of a well-known class of natural image models,
Gaussian scale mixtures (GSM)28, that has proven to be efficient in computer vision applications29

and has also been successfully used to account for sensory gain control properties of neurons in the
primary visual cortex (V1)19 as well as for a number of perceptual effects in low-level vision30. In
section 2 we define the GSM, derive equations for Bayesian inference under it and for learning its pa-
rameters through Expectation Maximisation. In section 3 we describe in detail the mapping between
the variables of the GSM and neural activities in V1. In section 4 we show that Bayesian inference
under the GSM reproduces a number of recent experimental results about the detailed patterns of
(co)variability and spontaneous activity of V1 simple cells under our sampling-based interpretation.
Finally, in section 5 we discuss our findings, in particular in the light of other recent proposals re-
lating neural variability to probabilistic inference22,31, and make experimental predictions unique to
our approach.

2 Bayesian inference and maximum likelihood learning in the GSM model

Generative model. In a Gaussian Scale Mixtures (GSM) model (Fig. 1), N (whitened) image
pixels, x 2 RN , are assumed to be the linear combination of M latent variables, y 2 RM , with
additive (spherical white) Gaussian noise:

P(x|y) = N
�
x;Ay, �2

xI
�

(1)

where A is the mixing matrix (column i containing the ‘projective field’ of yi), �2
x is the variance

of the observation noise, and I is the N ⇥ N identity matrix. For simplicity, we considered the
undercomplete case, with x being an 8⇥ 8 grayscale image patch (N = 64) and M = 32.

Latent variables y are modelled as the (deterministic) product of a
u z

y

x

Figure 1: Graphical model of
the GSM used in this paper.

zero-mean multivariate Gaussian random variable, u 2 RM , and a
non-negative scalar z for which we chose a Gamma prior (although
the exact shape of this prior does not substantially influence our
results)

y = z u (2)
P(u) = N (u;0,C) (3)
P(z) = Gamma(z; k, ✓) (4)

where C is the M ⇥ M covariance matrix of the Gaussian ran-
dom variables u, and k = 2 and ✓ = 2 are the shape and scale
parameters of the Gamma prior over z, respectively.

Bayesian inference. When the model is presented an image x, its task is to infer the values of
the latent variables u and z that may have produced it (note that once these are known, y is also
trivially known through Eq. 2). Due to observation noise (Eq. 1) and ambiguity (Eq. 2) these values

2

image

1

First-order statistics (pixel histograms)

… 

linear features
2 N

a1 feature1 + a2 feature2 + . . .+ aN featureN + noiseimage = contrast⇥
⇣ ⌘
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masking tone. As in the visual data, the rate–level curves of the
auditory nerve fiber shift to the right (on a log scale) in the pres-
ence of the masking tone (Fig. 6c and d). This shift is larger when
the mask frequency is closer to the optimal frequency for the cell.
Again, the model behavior is due to variations in suppressive
weighting across neurons tuned for adjacent frequencies, which
in turn arises from the statistical properties illustrated in Fig. 3b.

As mentioned above, a motivating characteristic of normal-
ization models has been the preservation of the shape of the tun-
ing curve under changes in input level. However, the shapes of
physiologically measured tuning curves for some parameters
exhibit substantial dependence on input level in both audition16

and vision17,18. Figure 7a shows an example of this behavior in a
neuron from primary visual cortex of a macaque monkey24. The
graph shows the response of the cell as a function of the radius of
a circular patch of sinusoidal grating, at two different contrast lev-
els. The high-contrast responses are generally larger than the low-
contrast responses, but in addition, the shape of the curve changes.
Specifically, for higher contrast, the peak response occurs at a
smaller radius. The same behavior is seen in our model neuron.

Analogous results were obtained for a typical cell in the audi-
tory nerve fiber of a squirrel monkey16 (Fig. 7b). Responses are
plotted as a function of frequency, for a number of different sound
pressure levels. As the sound pressure level increases, the frequency
tuning becomes broader, developing a ‘shoulder’ and a secondary
mode (Fig. 7b). Both cell and model show similar behavior,
despite the fact that we have not adjusted the parameters to fit
these data; all weights in the model are chosen by optimizing the
independence of the responses to the ensemble of natural sounds.
The model behavior arises because the weighted normalization
signal is dependent on frequency. At low input levels, this fre-
quency dependence is inconsequential because the additive con-
stant dominates the signal. But at high input levels, this frequency
dependence modulates the shape of the frequency tuning curve

that is primarily established by the numerator kernel of the model.
In Fig. 7b, the high contrast secondary mode corresponds to fre-
quency bands with minimal normalization weighting.

DISCUSSION
We have described a generic nonlinear model for early sensory
processing, in which linear responses were squared and then
divided by a gain control signal computed as a weighted sum of
the squared linear responses of neighboring neurons and a con-
stant. The form of this model was chosen to eliminate the type
of dependencies that we have observed between responses of pairs
of linear receptive fields to natural signals (Fig. 2). The parame-
ters of the model (in particular, the weights used to compute the
gain control signal) were chosen to maximize the independence
of responses to a particular set of signals. We demonstrated that
the resulting model accounts for a range of sensory nonlinearities
in ‘typical’ cells. Although there are quantitative differences
among individual cells, the qualitative behaviors we modeled
have been observed previously. Our model can account for phys-
iologically observed nonlinearities in two different modalities.
This suggests a canonical neural mechanism for eliminating the
statistical dependencies prevalent in typical natural signals.

The concept of gain control has been used previously to explain
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ber of mechanisms. For example, feedforward synaptic depres-
sion mechanisms have been documented and have been shown to
exhibit gain control properties30. Although such mechanisms
may account for suppressive behaviors within the classical recep-
tive field, they seem unlikely to account for such behaviors like
those shown in Fig. 6. It has also been proposed that normaliza-
tion could result from shunting inhibition driven by other neu-
rons31–33. This type of implementation necessarily involves
recursive lateral or feedback connections and thus introduces
temporal dynamics. Some researchers have described recurrent
models that can produce steady-state responses consistent with
divisive normalization in primary visual cortex10,20.

Some of the gain control behaviors we describe may be attrib-
uted to earlier stages of neural processing. Gain control occurs
at the level of the retina9,34, although selectivity for orientation
does not arise before cortical area V1. In fact, division by local

Fig. 7. Nonlinear changes in tuning curves at different input levels. 
(a) Mean response rate of a V1 neuron as a function of stimulus radius
for two different contrasts. The peak response radius for both cell and
model is smaller for the higher contrast24 . (b) Mean response rate of an
auditory nerve fiber as a function of stimulus frequency for a range of
sound pressure levels16 . Tuning curve broadens and saturates at high
levels. For all plots, maximum model response has been rescaled to
match that of the cell.

nonlinear behaviors of neurons. For example, a number of audi-
tory models have incorporated explicit gain control mecha-
nisms8,28,29. Visual models based on divisive normalization have
been developed to explain nonlinear effects in cortical area V1
within the classical receptive field10,20. The standard model
assumes that the response of each neuron is divided by an equal-
ly weighted sum of all other neurons and an additive constant.
Our model uses a weighted sum for the normalization signal, and
is thus able to account for a wider range of nonlinear behaviors. In
addition, our model provides an ecological justification, through
the efficient coding hypothesis2, for such gain control models.

Our model accounts for nonlinear changes in tuning curve
shape at different levels of input. Such behaviors have been gen-
erally interpreted to mean that the fundamental tuning proper-
ties of cells depend on the strength of the input signal. But in our
model, the fundamental tuning properties are determined by a
fixed linear receptive field, and are modulated by a gain control
signal with its own tuning properties. Although such behaviors
may seem to be artifacts, our model suggests that they occur nat-
urally in a system that is optimized for statistical independence
over natural signals.

Our current model provides a functional description, and
does not specify the circuitry or biophysics by which these func-
tions are implemented. Our normalization computation is done
instantaneously and we have only modeled mean firing rates.
Normalization behavior could potentially arise through a num-

Fig. 6. Suppression of responses to optimal stimuli by masking stimuli.
(a) Vision experiment24 . Mean response rate of a V1 neuron of an audi-
tory nerve fiber as a function of contrast of an optimally oriented grat-
ing presented in the classical receptive field, in the presence of a
surrounding parallel masking stimulus. Curves on cell data plots are fits
of a Naka–Rushton equation with two free parameters24 . (b) Mean
response rate versus center contrast, in the presence of an orthogonal
surround mask. (c) Auditory experiment11. Mean response rate of an
auditory nerve fiber versus sound pressure level, in the presence of a
non-optimal mask at 1.25 times the optimal frequency. (d) Mean
response rate versus sound pressure level, in the presence of a non-
optimal mask at 2.08 times the optimal frequency. For all plots, maxi-
mum model response has been rescaled to match that of the cell.
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Emergence of complex cell properties by learning to
generalize in natural scenes
Yan Karklin1{ & Michael S. Lewicki1{

A fundamental function of the visual system is to encode the build-
ing blocks of natural scenes—edges, textures and shapes—that sub-
serve visual tasks such as object recognition and scene
understanding. Essential to this process is the formation of abstract
representations that generalize from specific instances of visual
input. A common view holds that neurons in the early visual system
signal conjunctions of image features1,2, but how these produce
invariant representations is poorly understood. Here we propose that
to generalize over similar images, higher-level visual neurons encode
statistical variations that characterize local image regions. We pre-
sent a model in which neural activity encodes the probability distri-
bution most consistent with a given image. Trained on natural
images, the model generalizes by learning a compact set of dictionary
elements for image distributions typically encountered in natural
scenes. Model neurons show a diverse range of properties observed
in cortical cells. These results provide a new functional explanation
for nonlinear effects in complex cells3–6 and offer insight into coding
strategies in primary visual cortex (V1) and higher visual areas.

As we scan across a complex natural scene, fixations at multiple
locations (for example, on the trunk of a tree or along its edge)
produce a coherent percept of the underlying structure (the bark
texture or the contour of the edge), even though individual images
collected at the retina are inherently highly variable. Figure 1 illus-
trates the problem our brain solves so effortlessly: perceptually dis-
tinct image regions produce response patterns that are highly
overlapping and cannot be easily distinguished using low-level, linear
representations. What sort of computations are required to achieve
generalization across natural stimuli?

Early visual neurons are typically described as linear feature detec-
tors1,2. Models developed around this idea can accurately capture the
behaviour of neurons from the retina7 to simple cells in the cortex8

but, as the examples in Fig. 1 illustrate, neither individual features nor
linear transformations can reliably discriminate images of one struc-
ture from another. More abstract features are presumably computed
in later stages of the visual system, but our knowledge of processing
by these neurons is limited. In V1, complex cells respond to an edge
over a range of positions1, but classical models of these cells9,10 fail to
explain a number of nonlinear effects, such as surround suppression
and cross-orientation inhibition3–5. More importantly, there is no
functional explanation for the role of these behaviours in the percep-
tion of natural scenes. In higher visual areas such as V2 and V4,
neurons are more invariant to image properties such as position
and scale11–13 and might be encoding shape or texture12,14,15. For these
neurons to generalize effectively, the neural circuitry must generate a
representation that is similar across the wide distribution of images of
a given type (for example, a texture or contour) yet distinct across the
much larger distribution of all other images.

Previous theoretical work has shown that neurons in the primary
visual cortex form an efficient code adapted to the statistics of natural
images16,17, but this says nothing about how neurons generalize across

1Computer Science Department & Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA. {Present address: Center for Neural Science, New
York University, New York, New York, USA (Y.K.); Electrical Engineering and Computer Science Department, Case Western University, Cleveland, Ohio, USA and Wissenschaftskolleg
(Institute for Advanced Study) zu Berlin, Germany (M.S.L.).

ba

c

Figure 1 | Statistical patterns distinguish local regions of natural scenes.
a, A natural scene with four distinct regions outlined (image courtesy of
E. Doi). b, The scatter plot shows the joint output of a pair of linear feature
detectors (oriented Gabor filters) for 20 3 20-image patches sampled from
the four regions. The outputs from different regions are highly overlapping,
indicating that linear features provide no means to distinguish between the
regions. c, Each column shows the joint output of a different pair of linear
feature detectors sampled from the regions containing the tree bark or the
tree edge (the first column corresponds to features in b). The correlations in
each panel can be described by a Gaussian distribution and its covariance
(ellipses). The differences in the distributions between the rows reveal
characteristic patterns in correlations, which become even more prominent
as projections onto more features are considered. These patterns can be used
to generalize within regions while still distinguishing among them. As an
example, we highlight two patches in each region, shown by the circle and
triangle in each panel. Although the pairs of images are visibly quite
different, each image is consistent with the distribution of the local image
region. By contrasting the distributions across multiple dimensions, it is
possible to infer image type for single patches, even if the patches have
similar projections along some image features.
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Változók a korrelációs struktúrát kódolják

the intrinsic variability of scene elements. Here we extend the effi-
cient coding approach and propose that an important aspect of visual
computation is to represent the myriad statistical distributions
that characterize local image regions. Rather than coding the pixel
intensities of a patch of texture or edge, neurons in later stages encode
the image distribution (that is, the range and pattern of variability of
pixel intensities or image features) that is most consistent with the
input image. This allows the neural representation to generalize
across individual fixations and convey more abstract properties of
the image. We demonstrate that a model designed around this com-
putational goal and optimized for natural scenes explains nonlinear
properties of complex cells and neurons in higher visual areas,
thereby providing a new functional interpretation for these effects.

Fundamentally, generalization is the identification of common
characteristics of a class from specific instances. The goal of the
proposed model is to learn the statistical distributions that character-
ize local image regions, such as those in Fig. 1, and identify them from
individual image patches. What statistical regularities are relevant for
this task? As the examples in Fig. 1 suggest, the distributions of
perceptually similar images show consistent patterns in the degree
of variation along some dimensions, as well as in the strength of
correlations (and anti-correlations) among different feature dimen-
sions. Although these patterns appear subtle when projected onto
two dimensions, as in the examples, the full multivariate distribution,
consisting of hundreds of dimensions, produces prominent statistical
signatures that can be exploited by the visual system.

To determine how the model generalizes, we must specify how it
represents distributions of local image regions. A simple way to sum-
marize the patterns of correlations for a given type of image is the
covariance matrix of the data. A neural code for this structure could be
defined by enumerating the set of observed covariances and assigning
one neuron to each pattern, but this approach presents two problems.
First, local image classes are not known a priori. Second, given the
limited number of neurons in the visual system, it is not feasible to
represent all possible image types, let alone the combinatorial number
of possible image boundaries. Instead, we propose a distributed code
in which the graded activity of the neural population acts to describe a
continuum of potential covariance patterns.

This distribution coding model is illustrated schematically in Fig. 2.
The model represents the correlations present in local image regions
with a multivariate Gaussian distribution that has a fixed mean of
zero and a covariance that is a function of the neural activity (see

Methods). This simple statistical description affords both the flex-
ibility to capture a continuum of natural image distributions and
mathematical simplicity for tractable parameter estimation. The
model uses two sets of parameters to describe correlations in image
distributions. First, the vectors bk (arrows within circles) specify
image features along which the encoded distribution can be
expanded or contracted relative to the canonical distribution (black
circle). These vectors are shared by all neurons in the model (repre-
sented by the four grey circles, each of which contains the same set of
arrows). Because these vectors do not necessarily line up with the axes
of the input dimensions, changes in variation along a vector can
correspond to changes in the correlational pattern in many dimen-
sions at once. Neurons in the model (yj) describe changes along these
directions using weights wjk: each has a different set of weights, cor-
responding to an expansion or contraction along feature bk. A pos-
itive weight (red) means that the neuron responds to a wider range of
stimuli along that direction, a negative weight (blue) means it
responds to a narrower range, and a weight close to zero (grey)
indicates that the neuron is neutral to this direction. The combined
activation of all neurons specifies the final shape of the encoded
distribution (ellipses). Given a single fixation—one input image—
the model computes the neural representation (that is, the image
distribution) that provides the most probable explanation of the
input. The model is able to generalize over different image regions
if the inferred representation is similar across a region (for example,
for the pairs of patches in Fig. 2).

By adapting model parameters bk and wjk to the data, we are able to
find the most efficient way to use a limited number of neurons to
describe the wide range of distributions observed in natural images. It
should be noted that, although our goal is to derive a stable repres-
entation of all patches within a local region, no assumptions about
locality are made (encoding is done independently for each image
patch). It is the task of the model to learn a compact representation of
all patches and to automatically discover which share the statistical
properties of a particular type.

If, as hypothesized, neurons in the visual cortex encode patterns in
correlations in local regions and are adapted specifically to the stat-
istics of natural scenes, we expect the representations learned by the
model to reflect properties of visual neurons. To this end, we trained
the model on patches sampled from a large set of natural images and
examined the resulting parameters as well as the response properties
of model neurons to natural images.

The vectors bk encode the directions of common expansion or
contraction in the shape of the image distribution. Drawn as image
patches, each is an oriented and localized edge-like feature. The full
set tiles the spatial extent of the image patch (Fig. 3a) and spans the
range of orientations and spatial frequencies of natural images (not
shown). These oriented, band-pass image features are consistent with
the optimal images for exciting simple cells in the primary visual
cortex18,19. Similar representations have been derived previously
using linear statistical models that maximize the efficiency of the
image codes16,17. In the model proposed here, however, these features
are not used explicitly to reconstruct the original image, but instead
function to modify the encoded distributions (arrows in Fig. 2).
Thus, whereas the traditional interpretation of early sensory codes
is that they are adapted for faithful reconstruction of the stimulus,
our results suggest an additional interpretation: they convey varia-
tions in image distributions and allow downstream visual areas to
form more abstract representations.

The second set of parameters, the weights wjk, describes the role of
each neuron in shaping the encoded image distribution. A set of
learned weights for a typical model neuron is shown in Fig. 3b.
This neuron exerts the strongest effect on features in the top left of
the image patch, increasing the variability (that is, activation) of
those oriented at its ‘preferred’ orientation of 45u, decreasing the
variability of those at the orthogonal orientation, as well as those at
the preferred orientation but at an offset location. Rather than

Figure 2 | Distribution coding model. Rather than encoding the precise
pixel values of an input image (bottom), the proposed model infers for each
image the most likely distribution (ellipses) containing it. Activation
patterns for model neurons are shown at the top of each column. Absence of
activity corresponds to the lack of image structure (left panel)—that is, a
canonical distribution that reflects the statistics over all natural images
(black circle). Increased neural activity represents deviations from this
canonical distribution and captures statistical patterns in local image regions
(middle and right panels, patches and symbols as in Fig. 1). In each panel, the
activation pattern is the same for both inputs. See text for further details.
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responding to a few excitatory or suppressive image features, the
neuron integrates a large number to describe a pattern of variability
underlying a particular image distribution. Although the functional
significance of these subunits is to modify the statistical structure of
the encoded distribution, they also reflect stimulus features to which
this model neuron is most sensitive. It should be noted that a model
neuron is activated by all images from this distribution, rather than
signalling the presence of one best stimulus. Conversely, stimuli that
lie in parts of image space assigned low probability by the neuron
inhibit its activity.

To compare the behaviour of the model neuron to that of cells in
the visual cortex, we tested its response to stimuli used in classical

physiological experiments (sinusoidal gratings). Model parameters
were fixed after training on natural images, and neural response
computed on a set of patterns centred in the visual area that evoked
maximal response. This particular model neuron showed a variety of
properties observed in complex cells in V1 and cells in V2, including
phase invariance, orientation tuning and complex suppressive effects
(Fig. 3c). A large subset of the population exhibits similar properties,
whereas others encode more complex patterns that have been
observed in higher visual areas V2 and V4 (a detailed analysis of
the population and similarities to other experimental data are pro-
vided in the Supplementary Information). We emphasize that these
results, as well as image features described in Fig. 3a, were obtained
with no assumptions about the image structure encoded by visual
neurons and without fitting a model to data from physiological
experiments. Specifically, we did not restrict the encoded image fea-
tures to be localized and oriented, nor did we prescribe in advance
how the subunits are to be combined in the pattern represented by
each neuron.

Finally, we looked at the way in which the model uses the popu-
lation of neurons to represent images. If the model is able to general-
ize across the wide variability present in natural images, then image
patches that are widely scattered in the original space of linear fea-
tures should be tightly clustered in the space of the model’s repres-
entation. This can be illustrated by projecting into two dimensions
(as was done with image space in Fig. 1) the model representation of a
collection of images (Fig. 4). As hypothesized, by encoding image
distributions rather than the precise feature content of each image,
model neurons are able to encode perceptually similar images with
similar representations and to separate distinct image types.

One limitation of the statistical framework used here is that it does
not furnish an explicit feed-forward algorithm for neural encoding.
Nevertheless, it is possible to approximate inference in the model by a
sequential feed-forward computation: a neuron integrates the
squared responses of a large number of image features bk and corre-
lates the pattern against its weights wjk (see Supplementary
Information for details). This computation can be viewed as a gen-
eralization of the standard model of complex cells, in which each
complex cell takes as input the squared output of two simple
cells9,10,20,21. In contrast, model neurons can receive many inputs,
and the linear features themselves are learned. We find that the
optimal number of input features varies greatly, and the features
are integrated in a variety of ways. These predictions are consistent
with recent analyses of functional subfields in V1 complex cells6,22. In
addition, some model neurons integrate more complex spatial pat-
terns (see Supplementary Information), which predicts a neural res-
ponse to a richer variety of images than has been tested
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Figure 3 | Model neurons exhibit properties of cortical visual neurons.
a, When adapted to natural images, the vectors bk are oriented, localized in
space, and span the spatial extent of the 20 3 20-pixel image patch. Each line
reflects the orientation, spatial position within the image patch, and scale
(length of line) of one of the image features. Twenty-five representative
features (from a total of 1,000) are drawn in black, and shown in image form
on the right. b, Weights of one typical model neuron to the features bk. As in
a, each feature is represented by a line, and the colour of the line indicates the
sign and magnitude of the weight to the feature (see colour bar). Positive
weights indicate increased variability in the corresponding feature; negative
weights indicate decreased variability; features to which the neuron is
insensitive are shaded grey. Image features (bk) corresponding to the five
most positive and the five most negative weights are shown in the right panel;
the corresponding weights are above each feature. These act as excitatory
and inhibitory subunits for this neuron. c, When presented with sinusoidal
gratings, this model neuron replicates common aspects of the neural
response in complex cells in cortical area V1. It is highly tuned to the
grating’s orientation, but insensitive to its phase. Adding a grating into the
surrounding region suppresses the response (third plot, 0u) relative to
baseline response to a single grating (asterisk), but this suppression is tuned
to the orientation of the surround and is weakest when the surround is
orthogonal to the preferred orientation (90u). Masking with a superimposed
orthogonal grating suppresses the response (fourth plot, 90u), but this
suppression is also orientation-dependent. All model neuron responses are
plotted on the same scale (red axis); cell firing rates in each plot were
normalized to a maximum value of 1; preferred orientation was shifted to 0u
for the model neuron and the cell in all plots.
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Figure 4 | Generalization across natural variability. a, In contrast to linear
projections (compare to Fig. 1b), a two-dimensional projection of the
model’s representation (the activity of 150 model neurons) reveals well-
separated clusters. b, Each 3 3 3-image group corresponds to the array of
symbols in a. Despite the variability in the appearance of edges and textures,
the model’s representation of natural images generalizes within each region
while still distinguishing among them.
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responding to a few excitatory or suppressive image features, the
neuron integrates a large number to describe a pattern of variability
underlying a particular image distribution. Although the functional
significance of these subunits is to modify the statistical structure of
the encoded distribution, they also reflect stimulus features to which
this model neuron is most sensitive. It should be noted that a model
neuron is activated by all images from this distribution, rather than
signalling the presence of one best stimulus. Conversely, stimuli that
lie in parts of image space assigned low probability by the neuron
inhibit its activity.

To compare the behaviour of the model neuron to that of cells in
the visual cortex, we tested its response to stimuli used in classical

physiological experiments (sinusoidal gratings). Model parameters
were fixed after training on natural images, and neural response
computed on a set of patterns centred in the visual area that evoked
maximal response. This particular model neuron showed a variety of
properties observed in complex cells in V1 and cells in V2, including
phase invariance, orientation tuning and complex suppressive effects
(Fig. 3c). A large subset of the population exhibits similar properties,
whereas others encode more complex patterns that have been
observed in higher visual areas V2 and V4 (a detailed analysis of
the population and similarities to other experimental data are pro-
vided in the Supplementary Information). We emphasize that these
results, as well as image features described in Fig. 3a, were obtained
with no assumptions about the image structure encoded by visual
neurons and without fitting a model to data from physiological
experiments. Specifically, we did not restrict the encoded image fea-
tures to be localized and oriented, nor did we prescribe in advance
how the subunits are to be combined in the pattern represented by
each neuron.

Finally, we looked at the way in which the model uses the popu-
lation of neurons to represent images. If the model is able to general-
ize across the wide variability present in natural images, then image
patches that are widely scattered in the original space of linear fea-
tures should be tightly clustered in the space of the model’s repres-
entation. This can be illustrated by projecting into two dimensions
(as was done with image space in Fig. 1) the model representation of a
collection of images (Fig. 4). As hypothesized, by encoding image
distributions rather than the precise feature content of each image,
model neurons are able to encode perceptually similar images with
similar representations and to separate distinct image types.

One limitation of the statistical framework used here is that it does
not furnish an explicit feed-forward algorithm for neural encoding.
Nevertheless, it is possible to approximate inference in the model by a
sequential feed-forward computation: a neuron integrates the
squared responses of a large number of image features bk and corre-
lates the pattern against its weights wjk (see Supplementary
Information for details). This computation can be viewed as a gen-
eralization of the standard model of complex cells, in which each
complex cell takes as input the squared output of two simple
cells9,10,20,21. In contrast, model neurons can receive many inputs,
and the linear features themselves are learned. We find that the
optimal number of input features varies greatly, and the features
are integrated in a variety of ways. These predictions are consistent
with recent analyses of functional subfields in V1 complex cells6,22. In
addition, some model neurons integrate more complex spatial pat-
terns (see Supplementary Information), which predicts a neural res-
ponse to a richer variety of images than has been tested
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Figure 3 | Model neurons exhibit properties of cortical visual neurons.
a, When adapted to natural images, the vectors bk are oriented, localized in
space, and span the spatial extent of the 20 3 20-pixel image patch. Each line
reflects the orientation, spatial position within the image patch, and scale
(length of line) of one of the image features. Twenty-five representative
features (from a total of 1,000) are drawn in black, and shown in image form
on the right. b, Weights of one typical model neuron to the features bk. As in
a, each feature is represented by a line, and the colour of the line indicates the
sign and magnitude of the weight to the feature (see colour bar). Positive
weights indicate increased variability in the corresponding feature; negative
weights indicate decreased variability; features to which the neuron is
insensitive are shaded grey. Image features (bk) corresponding to the five
most positive and the five most negative weights are shown in the right panel;
the corresponding weights are above each feature. These act as excitatory
and inhibitory subunits for this neuron. c, When presented with sinusoidal
gratings, this model neuron replicates common aspects of the neural
response in complex cells in cortical area V1. It is highly tuned to the
grating’s orientation, but insensitive to its phase. Adding a grating into the
surrounding region suppresses the response (third plot, 0u) relative to
baseline response to a single grating (asterisk), but this suppression is tuned
to the orientation of the surround and is weakest when the surround is
orthogonal to the preferred orientation (90u). Masking with a superimposed
orthogonal grating suppresses the response (fourth plot, 90u), but this
suppression is also orientation-dependent. All model neuron responses are
plotted on the same scale (red axis); cell firing rates in each plot were
normalized to a maximum value of 1; preferred orientation was shifted to 0u
for the model neuron and the cell in all plots.
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Figure 4 | Generalization across natural variability. a, In contrast to linear
projections (compare to Fig. 1b), a two-dimensional projection of the
model’s representation (the activity of 150 model neurons) reveals well-
separated clusters. b, Each 3 3 3-image group corresponds to the array of
symbols in a. Despite the variability in the appearance of edges and textures,
the model’s representation of natural images generalizes within each region
while still distinguishing among them.
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responding to a few excitatory or suppressive image features, the
neuron integrates a large number to describe a pattern of variability
underlying a particular image distribution. Although the functional
significance of these subunits is to modify the statistical structure of
the encoded distribution, they also reflect stimulus features to which
this model neuron is most sensitive. It should be noted that a model
neuron is activated by all images from this distribution, rather than
signalling the presence of one best stimulus. Conversely, stimuli that
lie in parts of image space assigned low probability by the neuron
inhibit its activity.

To compare the behaviour of the model neuron to that of cells in
the visual cortex, we tested its response to stimuli used in classical

physiological experiments (sinusoidal gratings). Model parameters
were fixed after training on natural images, and neural response
computed on a set of patterns centred in the visual area that evoked
maximal response. This particular model neuron showed a variety of
properties observed in complex cells in V1 and cells in V2, including
phase invariance, orientation tuning and complex suppressive effects
(Fig. 3c). A large subset of the population exhibits similar properties,
whereas others encode more complex patterns that have been
observed in higher visual areas V2 and V4 (a detailed analysis of
the population and similarities to other experimental data are pro-
vided in the Supplementary Information). We emphasize that these
results, as well as image features described in Fig. 3a, were obtained
with no assumptions about the image structure encoded by visual
neurons and without fitting a model to data from physiological
experiments. Specifically, we did not restrict the encoded image fea-
tures to be localized and oriented, nor did we prescribe in advance
how the subunits are to be combined in the pattern represented by
each neuron.

Finally, we looked at the way in which the model uses the popu-
lation of neurons to represent images. If the model is able to general-
ize across the wide variability present in natural images, then image
patches that are widely scattered in the original space of linear fea-
tures should be tightly clustered in the space of the model’s repres-
entation. This can be illustrated by projecting into two dimensions
(as was done with image space in Fig. 1) the model representation of a
collection of images (Fig. 4). As hypothesized, by encoding image
distributions rather than the precise feature content of each image,
model neurons are able to encode perceptually similar images with
similar representations and to separate distinct image types.

One limitation of the statistical framework used here is that it does
not furnish an explicit feed-forward algorithm for neural encoding.
Nevertheless, it is possible to approximate inference in the model by a
sequential feed-forward computation: a neuron integrates the
squared responses of a large number of image features bk and corre-
lates the pattern against its weights wjk (see Supplementary
Information for details). This computation can be viewed as a gen-
eralization of the standard model of complex cells, in which each
complex cell takes as input the squared output of two simple
cells9,10,20,21. In contrast, model neurons can receive many inputs,
and the linear features themselves are learned. We find that the
optimal number of input features varies greatly, and the features
are integrated in a variety of ways. These predictions are consistent
with recent analyses of functional subfields in V1 complex cells6,22. In
addition, some model neurons integrate more complex spatial pat-
terns (see Supplementary Information), which predicts a neural res-
ponse to a richer variety of images than has been tested
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(length of line) of one of the image features. Twenty-five representative
features (from a total of 1,000) are drawn in black, and shown in image form
on the right. b, Weights of one typical model neuron to the features bk. As in
a, each feature is represented by a line, and the colour of the line indicates the
sign and magnitude of the weight to the feature (see colour bar). Positive
weights indicate increased variability in the corresponding feature; negative
weights indicate decreased variability; features to which the neuron is
insensitive are shaded grey. Image features (bk) corresponding to the five
most positive and the five most negative weights are shown in the right panel;
the corresponding weights are above each feature. These act as excitatory
and inhibitory subunits for this neuron. c, When presented with sinusoidal
gratings, this model neuron replicates common aspects of the neural
response in complex cells in cortical area V1. It is highly tuned to the
grating’s orientation, but insensitive to its phase. Adding a grating into the
surrounding region suppresses the response (third plot, 0u) relative to
baseline response to a single grating (asterisk), but this suppression is tuned
to the orientation of the surround and is weakest when the surround is
orthogonal to the preferred orientation (90u). Masking with a superimposed
orthogonal grating suppresses the response (fourth plot, 90u), but this
suppression is also orientation-dependent. All model neuron responses are
plotted on the same scale (red axis); cell firing rates in each plot were
normalized to a maximum value of 1; preferred orientation was shifted to 0u
for the model neuron and the cell in all plots.
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Figure 4 | Generalization across natural variability. a, In contrast to linear
projections (compare to Fig. 1b), a two-dimensional projection of the
model’s representation (the activity of 150 model neurons) reveals well-
separated clusters. b, Each 3 3 3-image group corresponds to the array of
symbols in a. Despite the variability in the appearance of edges and textures,
the model’s representation of natural images generalizes within each region
while still distinguishing among them.
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(e.g., Holmes and Gross, 1984; Horel, 1996; Schiller, 1995; Wei-
skrantz and Saunders, 1984; Yaginuma et al., 1982). While these
deficits are not always severe, and sometimes not found at all
(Huxlin et al., 2000), this variability probably depends on the
type of object recognition task (and thus the alternative visual
strategies available). For example, some (Schiller, 1995; Wei-
skrantz and Saunders, 1984), but not all, primate ventral stream
lesion studies have explicitly required invariance.
While the human homology to monkey IT cortex is not well es-

tablished, a likely homology is thecortex in andaround thehuman
lateral occipital cortex (LOC) (see Orban et al., 2004 for review).
For example, a comparison of monkey IT and human ‘‘IT’’
(LOC) shows strong commonality in the population representa-
tion of object categories (Kriegeskorte et al., 2008). Assuming
these homologies, the importance of primate IT is suggested by
neuropsychological studies of human patients with temporal
lobedamage,whichcansometimesproduce remarkably specific
object recognition deficits (Farah, 1990). Temporary functional
disruptionof parts of thehumanventral stream (using transcranial
magnetic stimulation, TMS) can specifically disrupt certain types
of object discrimination tasks, such as face discrimination
(Pitcher et al., 2009). Similarly, artificial activation of monkey IT
neurons predictably biases the subject’s reported percept of
complex objects (Afraz et al., 2006). In sum, long-term lesion
studies, temporary activation/inactivation studies, and neuro-
physiological studies (described below) all point to the central
role of the ventral visual stream in invariant object recognition.
Ventral Visual Stream: Multiple, Hierarchically
Organized Visual Areas
The ventral visual stream has been parsed into distinct visual
‘‘areas’’ based on anatomical connectivity patterns, distinctive

anatomical structure, and retinotopic mapping (Felleman and
Van Essen, 1991). Complete retinotopic maps have been re-
vealed for most of the visual field (at least 40 degrees eccentricity
from the fovea) for areas V1, V2, and V4 (Felleman and Van Es-
sen, 1991) and thus each area can be thought of as conveying
a population-based re-representation of each visually presented
image. Within the IT complex, crude retinotopy exists over the
more posterior portion (pIT; Boussaoud et al., 1991; Yasuda
et al., 2010), but retinotopy is not reported in the central and
anterior regions (Felleman and Van Essen, 1991). Thus, while
IT is commonly parsed into subareas such as TEO and TE (Jans-
sen et al., 2000; Saleem et al., 2000, 1993; Suzuki et al., 2000;
Von Bonin and Bailey, 1947) or posterior IT (pIT), central IT
(cIT), and anterior IT (aIT) (Felleman and Van Essen, 1991), it is
unclear if IT cortex is more than one area, or how the term
‘‘area’’ should be applied. One striking illustration of this is recent
monkey fMRI work, which shows that there are three (Tsao et al.,
2003) to six (Tsao et al., 2008a) or more (Ku et al., 2011) smaller
regions within IT that may be involved in face ‘‘processing’’ (Tsao
et al., 2008b) (also see Op de Beeck et al., 2008; Pinsk et al.,
2005). This suggests that, at the level of IT, behavioral goals
(e.g., object categorization) (Kriegeskorte et al., 2008; Naselaris
et al., 2009) many be a better spatial organizing principle than
retinotopic maps.
All visual cortical areas share a six-layered structure and the

inputs and outputs to each visual area share characteristic
patterns of connectivity: ascending ‘‘feedforward’’ input is
received in layer 4 and ascending ‘‘feedforward’’ output origi-
nates in the upper layers; descending ‘‘feedback’’ originates in
the lower layers and is received in the upper and lower layers
of the ‘‘lower’’ cortical area (Felleman and Van Essen, 1991).

Figure 3. The Ventral Visual Pathway
(A) Ventral stream cortical area locations in the macaque monkey brain, and flow of visual information from the retina.
(B) Each area is plotted so that its size is proportional to its cortical surface area (Felleman and Van Essen, 1991). Approximate total number of neurons (both
hemispheres) is shown in the corner of each area (M = million). The approximate dimensionality of each representation (number of projection neurons) is shown
above each area, based on neuronal densities (Collins et al., 2010), layer 2/3 neuronal fraction (O’Kusky and Colonnier, 1982), and portion (color) dedicated to
processing the central 10 deg of the visual field (Brewer et al., 2002). Approximate median response latency is listed on the right (Nowak and Bullier, 1997;
Schmolesky et al., 1998).
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of the between-subject variability being captured by differences in 
overall performance (A0). As expected, the simpler V1 model required 
a smaller scaling to generate metameric images. Specifically, critical  
scaling values for the V1 model were 0.26 o 0.05 (mean o s.d.), 
whereas values for the mid-ventral model were roughly twice as  
large (0.48 o 0.02).

Estimation of physiological locus
We then compared the psychophysically estimated scaling parameters 
to physiological estimates of receptive field size scaling in different 
cortical areas. Functional magnetic resonance imaging has been used 
to measure population receptive fields in humans by estimating the 
spatial extent of a stimulus that contributes to the hemodynamic 
response across different regions of the visual field13. Although these 
sizes grow with eccentricity, and across successive visual areas, they 
include additional factors, such as variability in receptive field posi-
tion and non-neural hemodynamic effects, which may depend on 
both eccentricity and visual area. We chose to compare our results 

Figure 2 Mid-ventral model, example metameric stimuli and experimental task. (a) In each spatial pooling region, the image was first decomposed 
using a population of model V1 cells (both simple and complex), varying in their preferred orientation and spatial frequency. Model responses were 
computed from products of the filter outputs across different positions, orientations and scales, averaged over each of the pooling regions.  
(b) An original photograph of the Brunnen der Lebensfreude in Rostock, Germany. (c,d) Synthetic image samples, randomly selected from the set of 
images that generated model responses identical to those of the original (b). The value of the scaling parameter (used to determine the pooling regions 
of the model) was selected to yield 75% correct performance in discriminating such synthetic images (see Fig. 4). The two images, when viewed with 
fixation at the center (red dot), should appear to be nearly identical to the original and to each other, despite gross distortions in the periphery (for 
example, a woman’s face is scrambled and dissolves into the spray of the fountain). (e) Psychophysical ABX task. Human observers viewed a sequence 
of two synthetic stimuli ABX, each randomly selected from the set of all images having model responses matched to an original image, followed by a 
third image that was identical to one of the first two. Observers indicated which of the first two images matched the third.

Average
pair-wise V1

products

�

�

�

�

a

Original

b

Sample 1

c

Sample 1

Time

200 ms
500 ms

200 ms

1,000 ms
200 ms

2,000 ms

Sample 2 “Sample 1 or 2?”

e

Sample 2

d

Scaling (diameter/eccentricity) of receptive fields in synthesis model

1.0

0.3

0 0.50 1.00 1.50 0 0.50 1.00

Mid-ventral model V1 model

1.50

r2 = 0.91, 0.94

Chance

1.0

P
ro

po
rt

io
n 

co
rr

ec
t

0.3

0 0.50 1.00 1.50

r2 = 0.95, 0.85

1.0

0.3

0 0.50 1.00 1.50

r2 = 0.97, 0.90

r2 = 0.94, 0.95

1.0

0.3
Figure 3 Metamer experiment results. Each graphs shows, for an 
individual observer, the proportion of correct responses in the ABX task 
as a function of the scaling parameter (ratio of receptive field diameter 
to eccentricity) of the model used to generate the stimuli. Data were 
averaged over stimuli drawn from four naturalistic images. Dark gray 
indicates the mid-ventral model (see Fig. 2), whereas light gray  
indicates the V1 model (see Supplementary Fig. 2). Shaded region 
indicates the 68% confidence interval obtained using bootstrapping.  
The gray horizontal lines indicate chance performance. Black lines 
indicate performance of observer model with critical scaling and gain 
parameters chosen to maximize the likelihood of the data for each 
individual observer (see Online Methods). r 2 values for the fits are 
indicated at the bottom of each plot.
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overall performance (A0). As expected, the simpler V1 model required 
a smaller scaling to generate metameric images. Specifically, critical  
scaling values for the V1 model were 0.26 o 0.05 (mean o s.d.), 
whereas values for the mid-ventral model were roughly twice as  
large (0.48 o 0.02).

Estimation of physiological locus
We then compared the psychophysically estimated scaling parameters 
to physiological estimates of receptive field size scaling in different 
cortical areas. Functional magnetic resonance imaging has been used 
to measure population receptive fields in humans by estimating the 
spatial extent of a stimulus that contributes to the hemodynamic 
response across different regions of the visual field13. Although these 
sizes grow with eccentricity, and across successive visual areas, they 
include additional factors, such as variability in receptive field posi-
tion and non-neural hemodynamic effects, which may depend on 
both eccentricity and visual area. We chose to compare our results 

Figure 2 Mid-ventral model, example metameric stimuli and experimental task. (a) In each spatial pooling region, the image was first decomposed 
using a population of model V1 cells (both simple and complex), varying in their preferred orientation and spatial frequency. Model responses were 
computed from products of the filter outputs across different positions, orientations and scales, averaged over each of the pooling regions.  
(b) An original photograph of the Brunnen der Lebensfreude in Rostock, Germany. (c,d) Synthetic image samples, randomly selected from the set of 
images that generated model responses identical to those of the original (b). The value of the scaling parameter (used to determine the pooling regions 
of the model) was selected to yield 75% correct performance in discriminating such synthetic images (see Fig. 4). The two images, when viewed with 
fixation at the center (red dot), should appear to be nearly identical to the original and to each other, despite gross distortions in the periphery (for 
example, a woman’s face is scrambled and dissolves into the spray of the fountain). (e) Psychophysical ABX task. Human observers viewed a sequence 
of two synthetic stimuli ABX, each randomly selected from the set of all images having model responses matched to an original image, followed by a 
third image that was identical to one of the first two. Observers indicated which of the first two images matched the third.
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Figure 3 Metamer experiment results. Each graphs shows, for an 
individual observer, the proportion of correct responses in the ABX task 
as a function of the scaling parameter (ratio of receptive field diameter 
to eccentricity) of the model used to generate the stimuli. Data were 
averaged over stimuli drawn from four naturalistic images. Dark gray 
indicates the mid-ventral model (see Fig. 2), whereas light gray  
indicates the V1 model (see Supplementary Fig. 2). Shaded region 
indicates the 68% confidence interval obtained using bootstrapping.  
The gray horizontal lines indicate chance performance. Black lines 
indicate performance of observer model with critical scaling and gain 
parameters chosen to maximize the likelihood of the data for each 
individual observer (see Online Methods). r 2 values for the fits are 
indicated at the bottom of each plot.
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of the between-subject variability being captured by differences in 
overall performance (A0). As expected, the simpler V1 model required 
a smaller scaling to generate metameric images. Specifically, critical  
scaling values for the V1 model were 0.26 o 0.05 (mean o s.d.), 
whereas values for the mid-ventral model were roughly twice as  
large (0.48 o 0.02).

Estimation of physiological locus
We then compared the psychophysically estimated scaling parameters 
to physiological estimates of receptive field size scaling in different 
cortical areas. Functional magnetic resonance imaging has been used 
to measure population receptive fields in humans by estimating the 
spatial extent of a stimulus that contributes to the hemodynamic 
response across different regions of the visual field13. Although these 
sizes grow with eccentricity, and across successive visual areas, they 
include additional factors, such as variability in receptive field posi-
tion and non-neural hemodynamic effects, which may depend on 
both eccentricity and visual area. We chose to compare our results 

Figure 2 Mid-ventral model, example metameric stimuli and experimental task. (a) In each spatial pooling region, the image was first decomposed 
using a population of model V1 cells (both simple and complex), varying in their preferred orientation and spatial frequency. Model responses were 
computed from products of the filter outputs across different positions, orientations and scales, averaged over each of the pooling regions.  
(b) An original photograph of the Brunnen der Lebensfreude in Rostock, Germany. (c,d) Synthetic image samples, randomly selected from the set of 
images that generated model responses identical to those of the original (b). The value of the scaling parameter (used to determine the pooling regions 
of the model) was selected to yield 75% correct performance in discriminating such synthetic images (see Fig. 4). The two images, when viewed with 
fixation at the center (red dot), should appear to be nearly identical to the original and to each other, despite gross distortions in the periphery (for 
example, a woman’s face is scrambled and dissolves into the spray of the fountain). (e) Psychophysical ABX task. Human observers viewed a sequence 
of two synthetic stimuli ABX, each randomly selected from the set of all images having model responses matched to an original image, followed by a 
third image that was identical to one of the first two. Observers indicated which of the first two images matched the third.

Average
pair-wise V1

products

�

�

�

�

a

Original

b

Sample 1

c

Sample 1

Time

200 ms
500 ms

200 ms

1,000 ms
200 ms

2,000 ms

Sample 2 “Sample 1 or 2?”

e

Sample 2

d

Scaling (diameter/eccentricity) of receptive fields in synthesis model

1.0

0.3

0 0.50 1.00 1.50 0 0.50 1.00

Mid-ventral model V1 model

1.50

r2 = 0.91, 0.94

Chance

1.0

P
ro

po
rt

io
n 

co
rr

ec
t

0.3

0 0.50 1.00 1.50

r2 = 0.95, 0.85

1.0

0.3

0 0.50 1.00 1.50

r2 = 0.97, 0.90

r2 = 0.94, 0.95

1.0

0.3
Figure 3 Metamer experiment results. Each graphs shows, for an 
individual observer, the proportion of correct responses in the ABX task 
as a function of the scaling parameter (ratio of receptive field diameter 
to eccentricity) of the model used to generate the stimuli. Data were 
averaged over stimuli drawn from four naturalistic images. Dark gray 
indicates the mid-ventral model (see Fig. 2), whereas light gray  
indicates the V1 model (see Supplementary Fig. 2). Shaded region 
indicates the 68% confidence interval obtained using bootstrapping.  
The gray horizontal lines indicate chance performance. Black lines 
indicate performance of observer model with critical scaling and gain 
parameters chosen to maximize the likelihood of the data for each 
individual observer (see Online Methods). r 2 values for the fits are 
indicated at the bottom of each plot.
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We performed an additional experiment to determine directly 
whether our mid-ventral model could predict recognition performance 
in a crowding task. The experimental design was inspired by a previous 
study linking statistical pooling in the periphery to crowding24. First, 
we measured observers’ ability to recognize target letters presented 
peripherally (6 deg) between two flanking letters, varying the target-
to-flanker spacing to obtain a psychometric function (Fig. 6a). We 
then used the mid-ventral model to generate synthetic metamers for 
a subset of these peripherally presented letter stimuli and measured 
the ability of observers to recognize the letters in these metamer 
stimuli under foveal viewing. Recognition failure (or success) for a 
single metamer cannot alone indicate crowding (or lack thereof), but 
the average performance across an ensemble of metamer samples 
 quantifies the limitations on recognizability imposed by the model.

Average recognition performance for the metamers is well matched 
to that of their corresponding letter stimuli (Fig. 6a) for metamers 
synthesized with scaling parameter s = 0.5 (the average critical scaling 
estimated for our human observers). For metamers synthesized with 
scaling parameters of s = 0.4 or s = 0.6, performance was significantly 
higher or lower, respectively (P < 0.0001, two-tailed paired t test across 
observers and conditions). These results are consistent across all obser-
vers, at all spacings, and for two different eccentricities (Fig. 6b).

DISCUSSION
We constructed a model for visual pattern representation in the 
mid-level ventral stream that computes local correlations amongst 

V1 responses in eccentricity-dependent pooling regions. In addition, 
we developed a method for generating images with identical model 
responses and used these synthetic images to show that when the 
pooling region sizes of the model are set correctly, images with iden-
tical model responses are indistinguishable (metameric) to human 
observers, despite severe distortion of features in the periphery. We 
found that the critical pooling size required to produce metamericity 
is robust to bottom-up and top-down manipulations of discrimina-
tion performance; that critical pooling sizes are consistent with the 
 eccentricity dependence of receptive field sizes of neurons in ventral 
visual area V2; and that the model can predict degradations of peri-
pheral recognition known as crowding, as a function of both spacing  
and eccentricity.

Perceptual deficits in peripheral vision have been recognized for cen-
turies. Most early studies focused on the loss of acuity that results from 
eccentricity-dependent sampling and blurring in the earliest visual 
stages. Crowding is a more complex peripheral deficit39. In 1976, Jerome 
Lettvin gave a subjective account of this phenomenon, describing  
 letters embedded in text as having “lost form without losing crispness,” 
and concluding that “the embedded [letter] only seems to have a ‘statis-
tical’ existence.”20. This article seems to have drifted into obscurity, but 
these ideas have been formalized in recent reports that explain crowd-
ing in terms of excessive averaging or pooling of features21–24. One 
study in particular hypothesized that crowding is a manifestation of the 
representation of peripheral visual content with local summary statis-
tics24, and showed that human recognition performance for crowded 
letters was matched to that of foveally viewed images synthesized to 
match the statistics of the original stimulus (computed over a localized 
region containing both the letter and flankers).

Our model provides an instantiation of these pooling hypotheses 
that operates over the entire visual field, which, in conjunction with 
the synthesis methodology, enabled several scientific advances. First, 
we validated the model with a metamer discrimination procedure, 
which provides a more direct test than comparisons to recognition 
performance in a crowding experiment. Second, the parameterization 
of eccentricity dependence allowed us to estimate the size of pooling 
regions and to associate the model with a distinct stage of ventral 
stream processing. Third, the full-field implementation allowed us 
to examine crowding in stimuli extending beyond a single pooling 
region and to account for the dependence of recognition on both 
eccentricity and spacing, the defining properties of crowding18.

Finally, the fact that our model operates on arbitrary photographic 
images allows generalization of the laboratory phenomenon of crowd-
ing to complex scenes and everyday visual tasks. For example, crowd-
ing places limits on reading speed, as only a small number of letters 
around each fixation point are recognizable40. Model-synthesized 
metamers can be used to examine this ‘uncrowded’ window (Fig. 7a). 
We envision that our model could be used to optimize fonts, letter 
spacing or line spacing for robustness to crowding effects, potentially 
improving reading performance. There is also some evidence linking 
dyslexia to crowding with larger-than-normal critical spacing18,41,42, 
and the model might serve as a useful tool for investigating this 
hypothesis. Model-synthesized images also show how camouflaged 
objects, which are already difficult to recognize foveally, blend into 
the background when viewed peripherally (Fig. 7b,c).

The interpretation of our experimental results relies on assumptions 
about the representation of, and access to, information in the brain. 
This is perhaps best understood by analogy to trichromacy14. Color 
metamers occur because information is lost by the cones and cannot 
be recovered in subsequent stages. However, color appearance judg-
ments clearly do not imply direct conscious access to the responses of 
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Figure 6 Crowding experiment. (a) Recognition performance for two 
different kinds of stimuli: peripherally viewed triplets of letters and 
foveally viewed stimuli synthesized to produce model responses identical 
to their corresponding letter triplets. Black dots represent the average 
recognition performance for a peripheral letter between two flankers, 
as a function of letter-to-letter spacing (n = 5 observers). The black 
line represents the best fitting Weibull function. The gray shaded 
region represents the 95% confidence interval for fit obtained through 
bootstrapping. Synthetic stimuli were generated for spacings yielding 
approximately 50%, 65% and 80% performance, based on the average 
psychometric function. Colored dots indicate average recognition 
performance for model-synthesized stimuli (foveally viewed). Different 
colors indicate the scaling parameter used in the model (purple, 0.5; 
orange, 0.6; green, 0.4). Error bars represent s.d. across observers.  
(b) Comparison of recognition performance for the peripheral letter  
triplets (from the psychometric function in a) and the foveally viewed 
synthetic stimuli (colored dots from a). Each point represents data from 
a single observer for a particular spacing and scaling. Two observers 
performed an additional condition at a larger eccentricity (not shown in a) 
to extend the range of performance levels (the six left-most points).
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Untangling invariant object
recognition
James J. DiCarlo and David D. Cox

McGovern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Despite tremendous variation in the appearance of visual
objects, primates can recognize a multitude of objects,
each in a fraction of a second, with no apparent effort.
However, the brain mechanisms that enable this funda-
mental ability are not understood. Drawing on ideas from
neurophysiology and computation, we present a grap-
hical perspective on the key computational challenges of
object recognition, and argue that the format of neuronal
population representation and a property that we term
‘object tangling’ are central. We use this perspective to
show that the primate ventral visual processing stream
achieves a particularly effective solution in which single-
neuron invariance is not the goal. Finally, we speculate on
the key neuronal mechanisms that could enable this
solution, which, if understood, would have far-reaching
implications for cognitive neuroscience.

Introduction
Our daily activities rely heavily on the accurate and rapid
identification of objects in our visual environment. The
apparent ease of with which we recognize objects belies the
magnitude of this feat: we effortlessly recognize objects
from among tens of thousands of possibilities and we do so
within a fraction of a second, in spite of tremendous
variation in the appearance of each one. Understanding
the brain mechanisms that underlie this ability would be a
landmark achievement in neuroscience.

Object recognition is computationally difficult for many
reasons, but the most fundamental is that any individual
object can produce an infinite set of different images on the
retina, due to variation in object position, scale, pose and
illumination, and the presence of visual clutter (e.g. [1–5]).
Indeed, although we typically see an object many times, we
effectively never see the same exact image on our retina
twice.Althoughseveral computational effortshaveattacked
this so-called ‘invariance problem’ (e.g. [1,3,6–12]), a robust,
real-world machine solution still evades us and we lack a
satisfyingunderstanding of how theproblem is solvedby the
brain. We believe that these two achievements will be
accomplished nearly simultaneously by an approach that
takes into account both the computational issues and the
biological clues and constraints.

Because it is easy to get lost in the sea of previous
studies and ideas, the goal of this manuscript is to clear

the table, bring forth key ideas in the context of the primate
brain, and pull those threads together into a coherent
framework. Below, we use a graphical perspective to pro-
vide intuition about the object recognition problem, show
that the primate ventral visual processing stream pro-
duces a particularly effective solution in the inferotem-
poral (IT) cortex, and speculate on how the ventral visual
stream approaches the problem. Along the way, we argue
that some approaches are only tangential to, or even
distract from, understanding object recognition.

What is object recognition?
We define object recognition as the ability to accurately
discriminate each named object (‘identification’) or set of
objects (‘categorization’) from all other possible objects,
materials, textures other visual stimuli, and to do this
over a range of identity-preserving transformations of
the retinal image of that object (e.g. image transformations
resulting from changes in object position, distance, and
pose). Of course, vision encompasses many disparate chal-
lenges that may interact with object recognition, such as
material and texture recognition, object similarity esti-
mation, object segmentation, object tracking and trajectory
prediction. Exploring such possible interactions is not our
goal. Instead, we aim to see how far a clear focus on the
problem of object recognition will take us. We concentrate
on what we believe to be the core of the brain’s recognition
system – the ability to rapidly report object identity or
category after just a single brief glimpse of visual input
(<300 ms; see Box 1) [13,14].

What computational processes must underlie object
recognition?
To solve a recognition task, a subjectmust use some internal
neuronal representation of the visual scene (population
pattern of activity) tomake a decision (e.g. [15,16]): is object
A present or not? Computationally, the brain must apply a
decision function [16] to divide an underlying neuronal
representational space into regions where object A is pre-
sent and regions where it is not (Figure 1b; one function for
each object to be potentially reported). Because brains
compute with neurons, the subject must have neurons
somewhere in its nervous system – ‘read-out’ neurons –
that can successfully report if object A was present [17]. Of
course, there are many relevant mechanistic issues, for
example, how many such neurons are involved in comput-
ing the decision, where are they in the brain, is their
operation fixed or dynamically created with the task at
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graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
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object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it

implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under

Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an !200 ms interval) and the
dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here
provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels
along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold
(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.
(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly
between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two
object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds
generated from actual models of faces (14,400-dimensional data; 120 " 120 images) for two face objects were generated from mild variation in their pose, position, scale
and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best
separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are
hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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field (CRF) size. This matching procedure had little effect on V2
performance in either task, but did reduce V1 performance on the
sample task and increase V1 performance on the family task
(Methods). However, performance in the two areas remained sig-
nificantly different, suggesting more complex forms of selectivity
are involved.

Comparing Selectivity of Neuronal Populations. To elucidate the V2
response properties that allow it to outperform V1 in family
classification, we examined the dependence of performance on
the differences in statistics between pairs of texture families. We
built a Poisson maximum likelihood decoder to best discriminate
between each pair of texture families (105 different comparisons).
Comparing performance in V1 and V2 reveals two prominent
features (Fig. 6A). First, performance in V1 and V2 was highly
correlated across the different texture discriminations (r = 0.82, P <
0.001), suggesting that some of the features that drive performance

in V1 are also responsible for performance in V2. Second, V2
neurons performed better for nearly all pairs, and this improve-
ment was approximately independent of the performance seen in
V1 (Fig. 6A). A straight-line fit suggests that if V1 discrimination
performance were at chance, V2 performance would be 65%
correct [discriminability (d′) = 0.54]. To understand this relation-
ship, we sought to separate those stimulus properties that drive
performance in both V1 and V2 from those stimulus properties that
underlie the increase in performance of V2 over V1.
We chose texture families for this study that differed in their

spectral content: the relative amount of energy at different ori-
entations and spatial frequencies. V1 neurons are highly selec-
tive for spectral content (4), and this selectivity is maintained in
V2 (13). We wondered whether the spectral characteristics of the
stimuli could explain V1 performance. Across all 105 pairs of
texture families, we measured the magnitude of the difference in
spectral statistics between the two families. We then predicted
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dimension 1

Latent
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Fig. 4. Two-dimensional visualization of neural population responses in V1 and V2. (A) V1 population response to each visual texture stimulus, displayed in a
2D coordinate system that captures the responses of 102 V1 neurons [computed using t-SNE (30)]. Each point represents one texture image, with color in-
dicating the texture family. The larger, desaturated disks in the background indicate the centroid of all samples within each family. (B) Same analysis for the
responses of 103 V2 neurons.
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field (CRF) size. This matching procedure had little effect on V2
performance in either task, but did reduce V1 performance on the
sample task and increase V1 performance on the family task
(Methods). However, performance in the two areas remained sig-
nificantly different, suggesting more complex forms of selectivity
are involved.

Comparing Selectivity of Neuronal Populations. To elucidate the V2
response properties that allow it to outperform V1 in family
classification, we examined the dependence of performance on
the differences in statistics between pairs of texture families. We
built a Poisson maximum likelihood decoder to best discriminate
between each pair of texture families (105 different comparisons).
Comparing performance in V1 and V2 reveals two prominent
features (Fig. 6A). First, performance in V1 and V2 was highly
correlated across the different texture discriminations (r = 0.82, P <
0.001), suggesting that some of the features that drive performance

in V1 are also responsible for performance in V2. Second, V2
neurons performed better for nearly all pairs, and this improve-
ment was approximately independent of the performance seen in
V1 (Fig. 6A). A straight-line fit suggests that if V1 discrimination
performance were at chance, V2 performance would be 65%
correct [discriminability (d′) = 0.54]. To understand this relation-
ship, we sought to separate those stimulus properties that drive
performance in both V1 and V2 from those stimulus properties that
underlie the increase in performance of V2 over V1.
We chose texture families for this study that differed in their
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entations and spatial frequencies. V1 neurons are highly selec-
tive for spectral content (4), and this selectivity is maintained in
V2 (13). We wondered whether the spectral characteristics of the
stimuli could explain V1 performance. Across all 105 pairs of
texture families, we measured the magnitude of the difference in
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dicating the texture family. The larger, desaturated disks in the background indicate the centroid of all samples within each family. (B) Same analysis for the
responses of 103 V2 neurons.
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field (CRF) size. This matching procedure had little effect on V2
performance in either task, but did reduce V1 performance on the
sample task and increase V1 performance on the family task
(Methods). However, performance in the two areas remained sig-
nificantly different, suggesting more complex forms of selectivity
are involved.

Comparing Selectivity of Neuronal Populations. To elucidate the V2
response properties that allow it to outperform V1 in family
classification, we examined the dependence of performance on
the differences in statistics between pairs of texture families. We
built a Poisson maximum likelihood decoder to best discriminate
between each pair of texture families (105 different comparisons).
Comparing performance in V1 and V2 reveals two prominent
features (Fig. 6A). First, performance in V1 and V2 was highly
correlated across the different texture discriminations (r = 0.82, P <
0.001), suggesting that some of the features that drive performance

in V1 are also responsible for performance in V2. Second, V2
neurons performed better for nearly all pairs, and this improve-
ment was approximately independent of the performance seen in
V1 (Fig. 6A). A straight-line fit suggests that if V1 discrimination
performance were at chance, V2 performance would be 65%
correct [discriminability (d′) = 0.54]. To understand this relation-
ship, we sought to separate those stimulus properties that drive
performance in both V1 and V2 from those stimulus properties that
underlie the increase in performance of V2 over V1.
We chose texture families for this study that differed in their
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tive for spectral content (4), and this selectivity is maintained in
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2D coordinate system that captures the responses of 102 V1 neurons [computed using t-SNE (30)]. Each point represents one texture image, with color in-
dicating the texture family. The larger, desaturated disks in the background indicate the centroid of all samples within each family. (B) Same analysis for the
responses of 103 V2 neurons.
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performance in either task, but did reduce V1 performance on the
sample task and increase V1 performance on the family task
(Methods). However, performance in the two areas remained sig-
nificantly different, suggesting more complex forms of selectivity
are involved.
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response properties that allow it to outperform V1 in family
classification, we examined the dependence of performance on
the differences in statistics between pairs of texture families. We
built a Poisson maximum likelihood decoder to best discriminate
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correlated across the different texture discriminations (r = 0.82, P <
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underlie the increase in performance of V2 over V1.
We chose texture families for this study that differed in their
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V1 discrimination performance from the statistical differences,
over all pairs (Methods and Fig. 6B). The spectral differences
predicted V1 performance well (r = 0.7, P < 0.001), and the same
model also provided a good prediction for V2 performance (r =
0.59, P < 0.001). Reoptimizing the weights to predict V2 re-
sponses barely improved the correlation (r = 0.6, P < 0.001),
consistent with the notion that the spectral information repre-
sented in V2 is directly inherited from V1. However, the spectral
statistics captured little of the difference in performance be-
tween V1 and V2 (r = 0.22, P < 0.05).
These analyses suggest that the superior performance of V2

must be due to the higher order (i.e., beyond second order)
correlations present in the texture model. To test this theory, we
extracted the parameters that capture higher order statistics
through correlations of filter response magnitudes across position,
frequency, and orientation, and projected out the portion cap-
tured by the spectral statistics. We then predicted the difference in
V1 and V2 performance (Fig. 6C). Differences in the higher order

statistics, in contrast to spectral statistics, provided a good pre-
diction for the V1/V2 performance difference (r = 0.61, P < 0.001).
In summary, V1 discrimination performance was well captured

by the spectral statistics of naturalistic textures. This same set of
statistics captured a significant portion of V2 discrimination
performance, but most of the superiority of V2 over V1 comes
from higher order statistics.

Discussion
Our results support the hypothesis that populations of V2 neurons
represent statistics of the activity of local ensembles of V1 neu-
rons, which capture the appearance of naturally occurring tex-
tures. Using a set of stimuli for which these statistics are tightly
controlled, we showed that, relative to neurons in V1, V2 neurons
exhibit increased selectivity for these statistics, accompanied by an
increased tolerance for randomized image variations that do not
affect these statistics. This “tolerance to statistical resampling”
complements the more widely discussed visual invariances to
geometric distortions (e.g., translation, rotation, dilation) (8, 10)
or changes in the intensity, color, or position of a light source (9, 31).
Our results also help to integrate and interpret other findings.

The selectivity of V2 neurons for many artificial stimuli, including
gratings, angles, curves, anomalous contours, and texture-defined
patterns, is nearly the same as the selectivity of V1 neurons (14–
17, 32–35). This result would be expected if V2 neurons are se-
lective for a broad set of V1 response statistics and not for a small
subset of specialized combinations of V1 inputs, as assumed by
these approaches. On the other hand, the tolerance of V2 cells
identified here does seem consistent with the previously identified
behaviors of “complex unoriented” V2 cells (36), which are se-
lective for patches of light of a particular size but tolerant to
changes in position over a much larger region. Such a property
may explain why orientation selectivity so strongly predicted tol-
erance in V2 but less so in V1. This relationship might also reflect
greater heterogeneity of orientation tuning within V2 receptive
fields (16), providing a substrate for computing local orientation
statistics.
Our results complement recent work demonstrating V2 se-

lectivity for third- and fourth-order pixel statistics. Yu et al. (20)
examined responses of V1 and V2 neurons to binary images
synthesized with controlled pixel statistics up to fourth order, and
found that neuronal selectivity for multipoint (i.e., third and
fourth order) correlations is infrequent in V1 but common in V2.
The strength of this work derives from the well-defined stimulus
ensemble, which covers the full set of statistics up to fourth or-
der, and allows a thorough assessment of the selectivity for in-
dividual statistics in the responses of single neurons. On the
other hand, the restriction to statistics of a particular order, al-
though mathematically natural, is not necessarily aligned with the
restrictions imposed by the computational capabilities of bi-
ological visual systems, and this may explain why selectivity of V2
neurons for these statistics is only modestly greater than selectivity
of V1 neurons. The stimuli in our experiments are constrained by
statistics that are defined in terms of an idealized response model
for a V1 population. Although they also constrain multipoint pixel
statistics, they do not isolate them in pure form, and they span too
large a space to allow a thorough experimental characterization of
selectivity in individual cells. On the other hand, they represent
quantities that may be more directly related to the construction of
V2 responses from V1 afferents, and they allow direct synthesis of
stimuli bearing strong perceptual resemblance to their ecological
counterparts (18, 23, 24, 37).
The particular statistics we matched to create our texture

families are surely not represented fully and only in V2, and this
may explain why the reported difference in selectivity and tolerance
between V1 and V2, although robust, is not qualitative. In partic-
ular, these statistics include both the local correlation of oriented
linear filter responses (equivalent to a partial representation of
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Fig. 5. Quantifying representational differences between V1 and V2.
(A) Schematic of sample (black) and family (red) classification. For sample
classification, holdout data were classified among the 15 different samples
for each family. Performance for each of the families was then averaged
together to get total performance. For family classification, the decoder was
trained on multiple samples within each family, and then used to classify
held out data into each of the 15 different families. (B) Comparison of pro-
portion of correct classification of V1 and V2 populations for family classifi-
cation (red) and sample classification (black). We computed performance
measures for both tasks using five different population sizes, indicated by the
dot size (n= 1, n= 3,n= 10, n= 30, and n= 100). Chance performance for both
tasks was 1/15. Error bars represent 95% confidence intervals of the boot-
strapped distribution over included neurons and cross-validation partitioning.
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sensory evidence

P(a1, a2, . . . , aN | image, c)| {z }
posterior
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prior
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Demonstrated efficiency in: 
★ pattern-completion 
★ compression 
★ denoising

the parametric form of both  
evidence and expectation is determined by  

natural image statistics 
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traditional theories  
e.g. Olshausen & Field, Nature 1996,  
Schwartz & Simoncelli, Nat Neurosci 
2001
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mean response  ⤳  maximum a posteriori inference
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Stimulus-dependence of variance
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roadmap

• image model 

• consequence of the representation of prior 

• stimulus-dependence of variability 

• stimulus dependence of covariability of multiple neurons
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Stimulus onset quenches neural variability
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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