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e.g. Olshausen & Field, Nature 1996,  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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.

Neuron

Selective and Reliable Spiking in Visual Cortex

Neuron 65, 107–121, January 14, 2010 ª2010 Elsevier Inc. 109

neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.

Neuron

Selective and Reliable Spiking in Visual Cortex

Neuron 65, 107–121, January 14, 2010 ª2010 Elsevier Inc. 109

neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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neurons; p < 0.01; data not shown; see Supplemental Informa-
tion), suggesting that additional mechanisms beyond simple
hyperpolarization must be involved in increasing neuronal
selectivity.

Isolated nCRF Stimulation of RSC Neurons
Does Not Increase Selectivity or Elicit Membrane
Potential Hyperpolarization
We found that nCRF stimulation alone (annulus) cannot account
for the observed effects, because it did not significantly increase
average firing rates above spontaneous activity, in either intra-
cellularly recorded RSC neurons or in MU responses (Table
S2), nor did it result in a net change in the average membrane
potential compared with a blank screen (Table S2). However,
compared with spontaneous activity, there was a significant
increase in membrane potential standard deviation in RSC cells
during nCRF stimulation, indicative of increased synaptic
activity, consistent with previous reports (Monier et al., 2003).

Taken together, these observations indicate that nCRF costi-
mulation counterbalances much of the strong average depolar-
ization associated with CRF stimulation, either through a reduc-
tion in visually evoked EPSP, or an increase in IPSP, barrages.

CRF + nCRF Stimulation Increases the Amplitude
of IPSP Barrages
To examine the specific contributions of excitation and inhibition
to visual selectivity in RSC neurons, we pharmacologically
blocked several intrinsic neuronal conductances by including
QX-314 (blocks Na+ currents and the h-current) and Cs+ (blocks
K+ currents) in the intracellular recording electrode. We then com-
pared EPSPs and IPSPs evoked by CRF and CRF + nCRF stimu-
lation in neurons tonically hyperpolarized to around!75 mV (near
the reversal potential for GABAergic Cl! inhibition) or depolarized
to around 0 mV (near the reversal potential for glutamatergic exci-
tation) with intracellular current injection (see Experimental
Procedures). Stimulation of the CRF + nCRF resulted in a large
increase in average IPSP amplitude relative to CRF alone stimu-
lation (Figure 2A, blue trace; increase is downward for IPSPs),
with little or no effect on average EPSP amplitude (Figure 2B).
Across the population of RSC neurons (n = 9), we found a signifi-
cant increase in the overall amplitude of evoked IPSPs (Figure 2C,
blue, DIPSP = !1.99 ± 0.4 mV; 43.7 ± 12.0% increase) and no
significant difference in the overall amplitude of EPSPs evoked
by CRF + nCRF stimulation compared with CRF alone stimulation
(Figure 2C, red, DEPSP = 0.33 ± 0.2 mV; 4.9 ± 4.3% increase).

Figure 1. Naturalistic Wide-Field Visual Stimula-
tion Increases Selectivity
(A) Intracellular responses of an RSC neuron to repeated

presentations (five) of a natural scene movie restricted to

the classical receptive field (CRF). Average membrane

potential (Vm) = –57.8 mV. Inset shows extent of the movie

overlying the CRF; mask was opaque during recordings.

The selectivity or sparseness index (S) was 0.29 ± 0.01

(mean and standard error of the mean [± SEM]

throughout).

(B) Responses to five repeats of the same movie with

a larger aperture that stimulated portions of the nonclas-

sical receptive field (nCRF) in addition to the CRF. Average

Vm = –65.7 mV. Sparseness increased to 0.72 ± 0.01. See

also Movie S1.

(C and D) Histograms of spiking responses to CRF stimu-

lation (black) and (D) combined CRF + nCRF stimulation

(red). Peak CRF response to best frame (45.9 Hz; black

arrowhead) occurs 1.4 s after movie onset. Peak CRF +

nCRF response (17.2 Hz; red arrowhead) occurs 0.6 s after

movie onset. Histograms appear twice (C and D) and are

overlaid to facilitate comparison. Note that CRF + nCRF

costimulation results in the suppression of some peaks

present in the CRF response (open arrows), while others

are less affected (closed arrows). See also Figure S1.

(E) Spiking responses became significantly more sparse

(see text) in all 13 neurons (inset), corresponding to

a 23% net increase in sparseness with combined

CRF + nCRF stimulation (SCRF + nCRF = 0.69 ± 0.02) com-

pared with CRF alone stimulation (SCRF = 0.56 ± 0.02;

p < 0.01) across the population of RSC neurons. See

also Tables S1 and S2.

(F) Neurons were significantly hyperpolarized (–1.6 mV on

average; 10/13 individually, inset) during CRF + nCRF

stimulation (Vm CRF + nCRF = –65.3 ± 0.4 mV; Vm CRF =

–63.7 ± 0.6 mV; p < 0.01) in comparison to CRF only

stimulation.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9 ,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e# fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15 .
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16 .

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2

m1+
s2

1

s2
1+s2

2

m2 ð2Þ

1

s2
3

¼ 1

s2
1

+
1

s2
2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19 .

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i ¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k ¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼ 1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4 Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X# 1

k
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9 ,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,
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where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15 .
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16 .

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
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Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19 .

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i ¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k ¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼ 1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4 Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9 ,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,
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where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15 .
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16 .

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):
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Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19 .

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i ¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk
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(k ¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼ 1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4 Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9 ,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e# fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15 .
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16 .

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2

m1+
s2

1

s2
1+s2

2

m2 ð2Þ

1

s2
3

¼ 1

s2
1

+
1

s2
2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19 .

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i ¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k ¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼ 1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4 Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X# 1
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.

NATURE NEUROSCIENCE VOLUME 9 [ NUMBER 11 [ NOVEMBER 2006 1433

ART ICLES

Inferencia

given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9 ,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e# fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15 .
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16 .

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2

m1+
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1

s2
1+s2

2

m2 ð2Þ

1

s2
3
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2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19 .

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i ¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k ¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼ 1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4 Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X# 1

k
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9 ,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e# fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15 .
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16 .

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2

m1+
s2

1

s2
1+s2

2

m2 ð2Þ

1

s2
3

¼ 1

s2
1

+
1

s2
2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19 .

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i ¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k ¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼ 1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4 Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X# 1
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9 ,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e# fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15 .
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16 .

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2
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Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19 .

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i ¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k ¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼ 1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4 Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X# 1
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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Sk is the covariance matrix of rk, and f ¢k is the derivative of the tuning
curves. In the case of independent Poisson noise, identically shaped
tuning curves, f(s), in the two populations, and different gains, it turns
out that h(s) ¼ log f(s), and fk(rk,gk) ¼ exp(-cgk)Pi exp(rki log gk)/rki!
with c a constant.

As indicated by equation (5), for addition of population codes to be
optimal, the right-hand side of this equation must be independent of
both gk and k. As f ¢ is clearly proportional to the gain, for the first
condition to be satisfied Sk(s,gk) must also be proportional to the gain.
This is exactly what is observed in cortex, where it is found that the
covariance matrix is proportional to the mean spike count6,20, which in
turn is proportional to the gain. This applies in particular to indepen-
dent Poisson noise, for which the variance is equal to the mean, but is
not limited to that distribution. For instance, we do not require that the
neurons be independent (that is, that Sk(s,gk) be diagonal). Also,
although we need the covariance to be proportional to the mean, the
constant of proportionality does not have to be 1. This is important
because how the diagonal elements of the covariance matrix scale with g
determines the Fano factor, and values reported in cortex for this
scaling are not always 1 (as would be the case for purely Poisson
neurons) but instead range from 0.3 to 1.8 (refs. 6,20).

The second condition, that h¢(s) must be independent of k, requires
that h(s) be identical, up to an additive constant, in all input layers. This

occurs, for instance, when the input tuning curves are identical and the
noise is independent and Poisson. When the h(s)’s are not the same, so
that h(s)- hk(s), addition is no longer optimal, but optimality can still
be achieved with linear combinations of activity, that is, a dependence
of the form r3 ¼ A1

Tr1 + A2
Tr2 (provided the functions of s that make

up the components of the hk(s)’s are drawn from a common basis set;
details in Supplementary Note). Therefore, even if the tuning curves
and covariance structures are completely different in the two popula-
tion codes—for instance, Gaussian tuning curves in one and sigmoidal
curves in the other—optimal Bayesian inference can be achieved with
linear combinations of population codes.

To illustrate this point, we show a simulation (Fig. 3) in which there
are three input layers in which the tuning curves are Gaussian, sigmoidal
increasing and sigmoidal decreasing, and the parameters of the tuning
curves, such as the widths, slopes, amplitude and baseline activity, vary
within each layer (that is, the tuning curves are not perfectly translation
invariant). As predicted, with an appropriate choice of the matrices A1,
A2 and A3 (Supplementary Note), a linear combination of the input
activities, r3 ¼ A1

Tr1+ A2
Tr2+ A3

Tr3, is optimal.
Another important property of equation (4) worth emphasizing is

that it imposes no constraint on the shape of the probability distribu-
tion with respect to s, so long as h(s) forms a basis set. In other words,
our scheme works for a large class of distributions over s, not just
Gaussian distributions.

Finally, it is easy to incorporate prior distributions. We encode the
desired prior in a population code (using equation (1)) and add that to

25
20

A
ct

iv
ity 15

P
(r

1 
+ 
r 2

 s
)

10
5
0

25
20

A
ct

iv
ity 15

10
5
0

0 45 90 135
Preferred stimulus

25
20

A
ct

iv
ity 15

10
5
0

45 90 135
Preferred stimulus

0 45 90 135
Preferred stimulus

0.04

0.02

0

0.04

0.02

0

0 135
S

0.04

0.02

0
0 135

S

0 135
S

1

1σ 2
= Kg1

1

3σ 2
1

1σ 2

1

2σ2
= Kg3 = K (g1 + g2) = 

1

2σ 2
= Kg2

C1

C2

+

+

g2

g3 = g1 + g2

g1
P

(r
1 

s)
P

(r
2 

s)

10

8

6

4

2

0

10

5

15

0

10

S
pi

ke
 c

ou
nt

s

5

20

15

25

0
–200 –60 –40 –20–100

Preferred stimulus Preferred stimulus Stimulus

0 0100 200 20–200 –100 0 100 200 –200 –100 0 100 200

Preferred stimulus

F
iri

ng
 r

at
e 

(H
z)

A
ct

iv
iti

es

0

0.02

0.04

0.06

0.08

P
ro

ba
bi

lit
y

a cb d

Figure 3 Inference with non–translation invariant Gaussian and sigmoidal tuning curves. (a) Mean activity in the three input layers. Blue curves, input layer
with Gaussian tuning curves. Red curves, input layers with sigmoidal tuning curves with positive slopes. Green curves, input layers with sigmoidal tuning
curves with negative slopes. The noise in the curves is due to variability in the baseline, widths, slopes and amplitudes of the tuning curves and to the fact that
the tuning curves are not equally spaced along the stimulus axis. (b) Activity in the three input layers on a given trial. These activities were sampled from
Poisson distributions with means as in a. Color legend as in a. (c) Solid lines, mean activity in the output layer. Circles, output activity on a given trial,
obtained by a linear combination of the input activities shown in b. (d) Blue curves, probability distribution encoded by the blue stars in b (input layer with
Gaussian tuning curves). Red-green curve, probability distribution encoded by the red and green circles in b (the two input layers with sigmoidal tuning
curves). Magenta curve, probability distribution encoded by the activity shown in c (magenta circles). Black dots, probability distribution obtained with Bayes
rule (that is, the product of the blue and red-green curves appropriately normalized). The fact that the black dots are perfectly lined up with the magenta curve
demonstrates that the output activity shown in c encodes the probability distribution expected from Bayes rule.

Figure 2 Inference with probabilistic population codes for Gaussian
probability distributions and Poisson variability. The left plots correspond
to population codes for two cues, c1 and c2, related to the same variable s.
Each of these encodes a probability distribution with a variance inversely
proportional to the gains, g1 and g2, of the population codes (K is a constant
depending on the width of the tuning curve and the number of neurons).
Adding these two population codes leads to the output population activity
shown on the right. This output also encodes a probability distribution with a
variance inversely proportional to the gain. Because the gain of this code is
g1 + g2, and g1 and g2 are inversely proportional to s1

2 and s2
2, respectively,

the inverse variance of the output population code is the sum of the inverse
variances associated with c1 and c2. This is precisely the variance expected
from an optimal Bayesian inference (equation (3)). In other words, taking the
sum of two population codes is equivalent to taking the product of their
encoded distributions.
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Sk is the covariance matrix of rk, and f ¢k is the derivative of the tuning
curves. In the case of independent Poisson noise, identically shaped
tuning curves, f(s), in the two populations, and different gains, it turns
out that h(s) ¼ log f(s), and fk(rk,gk) ¼ exp(-cgk)Pi exp(rki log gk)/rki!
with c a constant.

As indicated by equation (5), for addition of population codes to be
optimal, the right-hand side of this equation must be independent of
both gk and k. As f ¢ is clearly proportional to the gain, for the first
condition to be satisfied Sk(s,gk) must also be proportional to the gain.
This is exactly what is observed in cortex, where it is found that the
covariance matrix is proportional to the mean spike count6,20, which in
turn is proportional to the gain. This applies in particular to indepen-
dent Poisson noise, for which the variance is equal to the mean, but is
not limited to that distribution. For instance, we do not require that the
neurons be independent (that is, that Sk(s,gk) be diagonal). Also,
although we need the covariance to be proportional to the mean, the
constant of proportionality does not have to be 1. This is important
because how the diagonal elements of the covariance matrix scale with g
determines the Fano factor, and values reported in cortex for this
scaling are not always 1 (as would be the case for purely Poisson
neurons) but instead range from 0.3 to 1.8 (refs. 6,20).

The second condition, that h¢(s) must be independent of k, requires
that h(s) be identical, up to an additive constant, in all input layers. This

occurs, for instance, when the input tuning curves are identical and the
noise is independent and Poisson. When the h(s)’s are not the same, so
that h(s)- hk(s), addition is no longer optimal, but optimality can still
be achieved with linear combinations of activity, that is, a dependence
of the form r3 ¼ A1

Tr1 + A2
Tr2 (provided the functions of s that make

up the components of the hk(s)’s are drawn from a common basis set;
details in Supplementary Note). Therefore, even if the tuning curves
and covariance structures are completely different in the two popula-
tion codes—for instance, Gaussian tuning curves in one and sigmoidal
curves in the other—optimal Bayesian inference can be achieved with
linear combinations of population codes.

To illustrate this point, we show a simulation (Fig. 3) in which there
are three input layers in which the tuning curves are Gaussian, sigmoidal
increasing and sigmoidal decreasing, and the parameters of the tuning
curves, such as the widths, slopes, amplitude and baseline activity, vary
within each layer (that is, the tuning curves are not perfectly translation
invariant). As predicted, with an appropriate choice of the matrices A1,
A2 and A3 (Supplementary Note), a linear combination of the input
activities, r3 ¼ A1

Tr1+ A2
Tr2+ A3

Tr3, is optimal.
Another important property of equation (4) worth emphasizing is

that it imposes no constraint on the shape of the probability distribu-
tion with respect to s, so long as h(s) forms a basis set. In other words,
our scheme works for a large class of distributions over s, not just
Gaussian distributions.

Finally, it is easy to incorporate prior distributions. We encode the
desired prior in a population code (using equation (1)) and add that to
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Figure 3 Inference with non–translation invariant Gaussian and sigmoidal tuning curves. (a) Mean activity in the three input layers. Blue curves, input layer
with Gaussian tuning curves. Red curves, input layers with sigmoidal tuning curves with positive slopes. Green curves, input layers with sigmoidal tuning
curves with negative slopes. The noise in the curves is due to variability in the baseline, widths, slopes and amplitudes of the tuning curves and to the fact that
the tuning curves are not equally spaced along the stimulus axis. (b) Activity in the three input layers on a given trial. These activities were sampled from
Poisson distributions with means as in a. Color legend as in a. (c) Solid lines, mean activity in the output layer. Circles, output activity on a given trial,
obtained by a linear combination of the input activities shown in b. (d) Blue curves, probability distribution encoded by the blue stars in b (input layer with
Gaussian tuning curves). Red-green curve, probability distribution encoded by the red and green circles in b (the two input layers with sigmoidal tuning
curves). Magenta curve, probability distribution encoded by the activity shown in c (magenta circles). Black dots, probability distribution obtained with Bayes
rule (that is, the product of the blue and red-green curves appropriately normalized). The fact that the black dots are perfectly lined up with the magenta curve
demonstrates that the output activity shown in c encodes the probability distribution expected from Bayes rule.

Figure 2 Inference with probabilistic population codes for Gaussian
probability distributions and Poisson variability. The left plots correspond
to population codes for two cues, c1 and c2, related to the same variable s.
Each of these encodes a probability distribution with a variance inversely
proportional to the gains, g1 and g2, of the population codes (K is a constant
depending on the width of the tuning curve and the number of neurons).
Adding these two population codes leads to the output population activity
shown on the right. This output also encodes a probability distribution with a
variance inversely proportional to the gain. Because the gain of this code is
g1 + g2, and g1 and g2 are inversely proportional to s1

2 and s2
2, respectively,

the inverse variance of the output population code is the sum of the inverse
variances associated with c1 and c2. This is precisely the variance expected
from an optimal Bayesian inference (equation (3)). In other words, taking the
sum of two population codes is equivalent to taking the product of their
encoded distributions.
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Sk is the covariance matrix of rk, and f ¢k is the derivative of the tuning
curves. In the case of independent Poisson noise, identically shaped
tuning curves, f(s), in the two populations, and different gains, it turns
out that h(s) ¼ log f(s), and fk(rk,gk) ¼ exp(-cgk)Pi exp(rki log gk)/rki!
with c a constant.

As indicated by equation (5), for addition of population codes to be
optimal, the right-hand side of this equation must be independent of
both gk and k. As f ¢ is clearly proportional to the gain, for the first
condition to be satisfied Sk(s,gk) must also be proportional to the gain.
This is exactly what is observed in cortex, where it is found that the
covariance matrix is proportional to the mean spike count6,20, which in
turn is proportional to the gain. This applies in particular to indepen-
dent Poisson noise, for which the variance is equal to the mean, but is
not limited to that distribution. For instance, we do not require that the
neurons be independent (that is, that Sk(s,gk) be diagonal). Also,
although we need the covariance to be proportional to the mean, the
constant of proportionality does not have to be 1. This is important
because how the diagonal elements of the covariance matrix scale with g
determines the Fano factor, and values reported in cortex for this
scaling are not always 1 (as would be the case for purely Poisson
neurons) but instead range from 0.3 to 1.8 (refs. 6,20).

The second condition, that h¢(s) must be independent of k, requires
that h(s) be identical, up to an additive constant, in all input layers. This

occurs, for instance, when the input tuning curves are identical and the
noise is independent and Poisson. When the h(s)’s are not the same, so
that h(s)- hk(s), addition is no longer optimal, but optimality can still
be achieved with linear combinations of activity, that is, a dependence
of the form r3 ¼ A1

Tr1 + A2
Tr2 (provided the functions of s that make

up the components of the hk(s)’s are drawn from a common basis set;
details in Supplementary Note). Therefore, even if the tuning curves
and covariance structures are completely different in the two popula-
tion codes—for instance, Gaussian tuning curves in one and sigmoidal
curves in the other—optimal Bayesian inference can be achieved with
linear combinations of population codes.

To illustrate this point, we show a simulation (Fig. 3) in which there
are three input layers in which the tuning curves are Gaussian, sigmoidal
increasing and sigmoidal decreasing, and the parameters of the tuning
curves, such as the widths, slopes, amplitude and baseline activity, vary
within each layer (that is, the tuning curves are not perfectly translation
invariant). As predicted, with an appropriate choice of the matrices A1,
A2 and A3 (Supplementary Note), a linear combination of the input
activities, r3 ¼ A1

Tr1+ A2
Tr2+ A3

Tr3, is optimal.
Another important property of equation (4) worth emphasizing is

that it imposes no constraint on the shape of the probability distribu-
tion with respect to s, so long as h(s) forms a basis set. In other words,
our scheme works for a large class of distributions over s, not just
Gaussian distributions.

Finally, it is easy to incorporate prior distributions. We encode the
desired prior in a population code (using equation (1)) and add that to
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Figure 3 Inference with non–translation invariant Gaussian and sigmoidal tuning curves. (a) Mean activity in the three input layers. Blue curves, input layer
with Gaussian tuning curves. Red curves, input layers with sigmoidal tuning curves with positive slopes. Green curves, input layers with sigmoidal tuning
curves with negative slopes. The noise in the curves is due to variability in the baseline, widths, slopes and amplitudes of the tuning curves and to the fact that
the tuning curves are not equally spaced along the stimulus axis. (b) Activity in the three input layers on a given trial. These activities were sampled from
Poisson distributions with means as in a. Color legend as in a. (c) Solid lines, mean activity in the output layer. Circles, output activity on a given trial,
obtained by a linear combination of the input activities shown in b. (d) Blue curves, probability distribution encoded by the blue stars in b (input layer with
Gaussian tuning curves). Red-green curve, probability distribution encoded by the red and green circles in b (the two input layers with sigmoidal tuning
curves). Magenta curve, probability distribution encoded by the activity shown in c (magenta circles). Black dots, probability distribution obtained with Bayes
rule (that is, the product of the blue and red-green curves appropriately normalized). The fact that the black dots are perfectly lined up with the magenta curve
demonstrates that the output activity shown in c encodes the probability distribution expected from Bayes rule.

Figure 2 Inference with probabilistic population codes for Gaussian
probability distributions and Poisson variability. The left plots correspond
to population codes for two cues, c1 and c2, related to the same variable s.
Each of these encodes a probability distribution with a variance inversely
proportional to the gains, g1 and g2, of the population codes (K is a constant
depending on the width of the tuning curve and the number of neurons).
Adding these two population codes leads to the output population activity
shown on the right. This output also encodes a probability distribution with a
variance inversely proportional to the gain. Because the gain of this code is
g1 + g2, and g1 and g2 are inversely proportional to s1

2 and s2
2, respectively,

the inverse variance of the output population code is the sum of the inverse
variances associated with c1 and c2. This is precisely the variance expected
from an optimal Bayesian inference (equation (3)). In other words, taking the
sum of two population codes is equivalent to taking the product of their
encoded distributions.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9 ,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e# fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15 .
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16 .

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2

m1+
s2

1

s2
1+s2

2

m2 ð2Þ

1

s2
3

¼ 1

s2
1

+
1

s2
2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19 .

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i ¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k ¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼ 1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4 Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X# 1

k
ðs; gkÞf 0kðs; gkÞ ð5 Þ
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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Sk is the covariance matrix of rk, and f ¢k is the derivative of the tuning
curves. In the case of independent Poisson noise, identically shaped
tuning curves, f(s), in the two populations, and different gains, it turns
out that h(s) ¼ log f(s), and fk(rk,gk) ¼ exp(-cgk)Pi exp(rki log gk)/rki!
with c a constant.

As indicated by equation (5), for addition of population codes to be
optimal, the right-hand side of this equation must be independent of
both gk and k. As f ¢ is clearly proportional to the gain, for the first
condition to be satisfied Sk(s,gk) must also be proportional to the gain.
This is exactly what is observed in cortex, where it is found that the
covariance matrix is proportional to the mean spike count6,20, which in
turn is proportional to the gain. This applies in particular to indepen-
dent Poisson noise, for which the variance is equal to the mean, but is
not limited to that distribution. For instance, we do not require that the
neurons be independent (that is, that Sk(s,gk) be diagonal). Also,
although we need the covariance to be proportional to the mean, the
constant of proportionality does not have to be 1. This is important
because how the diagonal elements of the covariance matrix scale with g
determines the Fano factor, and values reported in cortex for this
scaling are not always 1 (as would be the case for purely Poisson
neurons) but instead range from 0.3 to 1.8 (refs. 6,20).

The second condition, that h¢(s) must be independent of k, requires
that h(s) be identical, up to an additive constant, in all input layers. This

occurs, for instance, when the input tuning curves are identical and the
noise is independent and Poisson. When the h(s)’s are not the same, so
that h(s)- hk(s), addition is no longer optimal, but optimality can still
be achieved with linear combinations of activity, that is, a dependence
of the form r3 ¼ A1

Tr1 + A2
Tr2 (provided the functions of s that make

up the components of the hk(s)’s are drawn from a common basis set;
details in Supplementary Note). Therefore, even if the tuning curves
and covariance structures are completely different in the two popula-
tion codes—for instance, Gaussian tuning curves in one and sigmoidal
curves in the other—optimal Bayesian inference can be achieved with
linear combinations of population codes.

To illustrate this point, we show a simulation (Fig. 3) in which there
are three input layers in which the tuning curves are Gaussian, sigmoidal
increasing and sigmoidal decreasing, and the parameters of the tuning
curves, such as the widths, slopes, amplitude and baseline activity, vary
within each layer (that is, the tuning curves are not perfectly translation
invariant). As predicted, with an appropriate choice of the matrices A1,
A2 and A3 (Supplementary Note), a linear combination of the input
activities, r3 ¼ A1

Tr1+ A2
Tr2+ A3

Tr3, is optimal.
Another important property of equation (4) worth emphasizing is

that it imposes no constraint on the shape of the probability distribu-
tion with respect to s, so long as h(s) forms a basis set. In other words,
our scheme works for a large class of distributions over s, not just
Gaussian distributions.

Finally, it is easy to incorporate prior distributions. We encode the
desired prior in a population code (using equation (1)) and add that to

25
20

A
ct

iv
ity 15

P
(r

1 
+ 
r 2

 s
)

10
5
0

25
20

A
ct

iv
ity 15

10
5
0

0 45 90 135
Preferred stimulus

25
20

A
ct

iv
ity 15

10
5
0

45 90 135
Preferred stimulus

0 45 90 135
Preferred stimulus

0.04

0.02

0

0.04

0.02

0

0 135
S

0.04

0.02

0
0 135

S

0 135
S

1

1σ 2
= Kg1

1

3σ 2
1

1σ 2

1

2σ2
= Kg3 = K (g1 + g2) = 

1

2σ 2
= Kg2

C1

C2

+

+

g2

g3 = g1 + g2

g1
P

(r
1 

s)
P

(r
2 

s)

10

8

6

4

2

0

10

5

15

0

10

S
pi

ke
 c

ou
nt

s

5

20

15

25

0
–200 –60 –40 –20–100

Preferred stimulus Preferred stimulus Stimulus

0 0100 200 20–200 –100 0 100 200 –200 –100 0 100 200

Preferred stimulus

F
iri

ng
 r

at
e 

(H
z)

A
ct

iv
iti

es

0

0.02

0.04

0.06

0.08

P
ro

ba
bi

lit
y

a cb d

Figure 3 Inference with non–translation invariant Gaussian and sigmoidal tuning curves. (a) Mean activity in the three input layers. Blue curves, input layer
with Gaussian tuning curves. Red curves, input layers with sigmoidal tuning curves with positive slopes. Green curves, input layers with sigmoidal tuning
curves with negative slopes. The noise in the curves is due to variability in the baseline, widths, slopes and amplitudes of the tuning curves and to the fact that
the tuning curves are not equally spaced along the stimulus axis. (b) Activity in the three input layers on a given trial. These activities were sampled from
Poisson distributions with means as in a. Color legend as in a. (c) Solid lines, mean activity in the output layer. Circles, output activity on a given trial,
obtained by a linear combination of the input activities shown in b. (d) Blue curves, probability distribution encoded by the blue stars in b (input layer with
Gaussian tuning curves). Red-green curve, probability distribution encoded by the red and green circles in b (the two input layers with sigmoidal tuning
curves). Magenta curve, probability distribution encoded by the activity shown in c (magenta circles). Black dots, probability distribution obtained with Bayes
rule (that is, the product of the blue and red-green curves appropriately normalized). The fact that the black dots are perfectly lined up with the magenta curve
demonstrates that the output activity shown in c encodes the probability distribution expected from Bayes rule.

Figure 2 Inference with probabilistic population codes for Gaussian
probability distributions and Poisson variability. The left plots correspond
to population codes for two cues, c1 and c2, related to the same variable s.
Each of these encodes a probability distribution with a variance inversely
proportional to the gains, g1 and g2, of the population codes (K is a constant
depending on the width of the tuning curve and the number of neurons).
Adding these two population codes leads to the output population activity
shown on the right. This output also encodes a probability distribution with a
variance inversely proportional to the gain. Because the gain of this code is
g1 + g2, and g1 and g2 are inversely proportional to s1

2 and s2
2, respectively,

the inverse variance of the output population code is the sum of the inverse
variances associated with c1 and c2. This is precisely the variance expected
from an optimal Bayesian inference (equation (3)). In other words, taking the
sum of two population codes is equivalent to taking the product of their
encoded distributions.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9 ,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e# fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15 .
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16 .

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2

m1+
s2

1

s2
1+s2

2

m2 ð2Þ

1

s2
3

¼ 1

s2
1

+
1

s2
2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19 .

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i ¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k ¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼ 1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4 Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X# 1
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.

NATURE NEUROSCIENCE VOLUME 9 [ NUMBER 11 [ NOVEMBER 2006 1433

ART ICLES

given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9 ,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e# fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15 .
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16 .

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2
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s2

1

s2
1+s2

2

m2 ð2Þ

1

s2
3
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2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19 .

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i ¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k ¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼ 1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4 Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9 ,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e# fiðsÞfiðsÞri

ri!
pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15 .
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16 .

A simple case study: multisensory integration
Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2
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Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19 .

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i ¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k ¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼ 1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions
Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4 Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X# 1
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
single trial response to a stimulus whose value was 70. All neurons were
assumed to have a translated copy of the same generic Gaussian tuning curve
to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
corresponding to the peak of their tuning curve). The plot on the right shows
the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
the gain, g, of the population code (its overall amplitude) is inversely
proportional to the variance of the posterior distribution, s2. (b) Decreasing
the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
are different.
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Abstract

Perceptual Bistability refers to the phenomenon of spontaneously switching be-
tween two or more interpretations of an image under continuous viewing. Al-
though switching behavior is increasingly well characterized, the origins remain
elusive. We propose that perceptual switching naturally arises from the brain’s
search for best interpretations while performing Bayesian inference. In particular,
we propose that the brain explores a posterior distribution over image interpreta-
tions at a rapid time scale via a sampling-like process and updates its interpretation
when a sampled interpretation is better than the discounted value of its current in-
terpretation. We formalize the theory, explicitly derive switching rate distributions
and discuss qualitative properties of the theory including the effect of changes in
the posterior distribution on switching rates. Finally, predictions of the theory are
shown to be consistent with measured changes in human switching dynamics to
Necker cube stimuli induced by context.

1 Introduction

Our visual system is remarkably good at producing consistent, crisp percepts of the world around
us, in the process hiding interpretation uncertainty. Perceptual bistability is one of the few circum-
stances where ambiguity in the visual processing is exposed to conscious awareness. Spontaneous
switching of perceptual states frequently occurs during continuously viewing an ambiguous image,
and when a new interpretation of a previously stable stimuli is revealed (as in the sax/girl in fig-
ure ??a), spontaneous switching begins to occur[?]. Moreover, although perceptual switching can
be modulated by conscious effort[?, ?], it cannot be completely controlled.

(a) (b)

Figure 1: Examples of ambiguous figures: (a) can be interpreted as a woman’s face or a saxophone player. (b)
can be interpreted as a cube viewed from two different viewpoints.

Stimuli that produce bistability are characterized by having several distinct interpretations that are
in some sense equally plausible. Given the successes of Bayesian inference as a model of perception

∗http://www.schrater.org
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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of speed) of the gratings were manipulated in the C and IC
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condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
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(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
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fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
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2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1101430108 Moreno-Bote et al.



http://golab.wigner.mta.huStatisztikus tanulás az idegrendszerben

Quantitative consequences of sampling

• Two cues can be manipulated: 
๏ wavelength of the grating 
๏ speed of the grating 

• The cues are affecting independently the dominance of 
percepts — the weights of the modes

!17

Moreno Bote et al (2011) PNAS



http://golab.wigner.mta.huStatisztikus tanulás az idegrendszerben

on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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• Simultaneous presence of the two cues results in 
combination of the probability distributions implied by 
individual cues:

Bayesian sampling in visual perception
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It is well-established that some aspects of perception and action can
be understood as probabilistic inferences over underlying proba-
bility distributions. In some situations, it would be advantageous
for the nervous system to sample interpretations from a probability
distribution rather than commit to a particular interpretation. In
this study, we asked whether visual percepts correspond to sam-
ples from the probability distribution over image interpretations, a
form of sampling that we refer to as Bayesian sampling. To test
this idea, wemanipulated pairs of sensory cues in a bistable display
consisting of two superimposed moving drifting gratings, and we
asked subjects to report their perceived changes in depth ordering.
We report that the fractions of dominance of each percept follow
the multiplicative rule predicted by Bayesian sampling. Further-
more, we show that attractor neural networks can sample proba-
bility distributions if input currents add linearly and encode
probability distributions with probabilistic population codes.

Bayesian inference | neuronal network | neuronal noise | perceptual
bistability

There is mounting evidence that neural circuits can implement
probabilistic inferences over sensory, cognitive, or motor

variables. In some cases, humans can perform these inferences
optimally, as in multi-cue or multisensory integration (1–8). For
complex tasks, such as object recognition, action perception, and
object tracking, the computations required for optimal inference
are intractable, which implies that humans must use approximate
inferences (9–11). One approximate scheme that is particularly
appealing from a biological point of view is sampling. Consider
as an example the problem of object recognition. The goal of
the inference in this case would be to compute the probability over
object identities given the image. Although this probability dis-
tribution may be difficult to compute explicitly, one can often
design algorithms to generate samples from the distribution,
allowing one to perform approximate inference (12, 13). Some
human cognitive choice behaviors suggest that the nervous system
implements sampling. However, whether the same is true for low-
level perceptual processing is currently unknown.
Stimuli that lead to bistable percepts (14–18), like the Necker

cube, provide a tractable experimental preparation for testing the
sampling hypothesis. With such stimuli, perception alternates
stochastically between two possible interpretations, a behavior
consistent with sampling as suggested by several works (16, 19,
20). However, the key question is what probability distribution is
being sampled. If the brain uses sampling for Bayesian inference,
neural circuits should sample from an internal probability distri-
bution on possible stimulus interpretations that are conditioned
on the available sensory data, the so-called posterior distribution.
This distribution places important constraints on the distributions
of perceptual states for bistable stimuli.
To test this idea, we used stimuli composed of two drifting

gratings whose depth ordering is ambiguous (21). We then ma-
nipulated two depth cues to vary the fractions of dominance of the
percepts. Our central prediction is that the fractions of dominance
of each percept should behave as probabilities if they are the re-
sult of a sampling process of a posterior distribution over image
interpretations. We will refer to this form of sampling as Bayesian
sampling. First, we show that subjects’ fractions of dominance in
different cue conditions follow the same multiplicative rule as

probabilities in the Bayesian calculus, suggesting that bistable
perception is indeed a form of Bayesian sampling. Second, we
describe possible neural implementations of a Bayesian sampling
process using attractor networks, and we discuss the link with
probabilistic population codes (22).

Results
Multiplicative Rule for Combining Empirical Fractions of Dominance.
We asked subjects to report their spontaneous alternations in
perceived depth ordering of two superimposed moving gratings
over a 1-min period and measured the fraction of dominance time
for each percept (Methods and Fig. 1A). In the first experiment,
the two drifting gratings, α and β, were parameterized by their
wavelength and speed. One of the wavelengths was always set to
a fixed value λ*, and one of the speeds was set to a fixed value v*.
The remaining wavelength and speed parameters, λ and v, re-
spectively, determined the difference in wavelength and speed
between gratings α and β, denoted ∆λ and ∆v, and hence, the
information for choosing grating α as the one behind. We refer to
these differences as the cues to depth ordering, and we refer to
the condition where the two differences are zero as the neutral
cue condition (∆λ = 0 and ∆v = 0). These cues have been shown
to have a strong effect on the depth ordering of the gratings be-
cause of their relationship with the natural statistics of wavelength
and speed of distant objects (21). In the second experiment, we
manipulated wavelength and disparity, d, of the gratings. In this
case, the label v should be interchanged with the label d.
According to the Bayesian sampling hypothesis, the empirical

fractions of dominance arise from a process that samples the
posterior distribution on possible scene interpretations given the
sensory input. As we show in SI Methods, when two conditionally
independent cues are available (i.e., the values of the cues are
independent when conditioned on true depth), an optimal sys-
tem should sample from a probability distribution given by the
normalized product of the probability distributions derived by
varying each cue in isolation while keeping the other cue neutral.
Our hypothesis implies that the empirical fractions should be-
have as probabilities, and therefore, they should follow the
multiplicative rule (Eq. 1)

fλv ¼ fλ fv
fλ fv þ ð1− fλÞð1− fvÞ

; [1]

where fλv is the fraction of time that subjects report percept A
(grating α moving behind grating β) when the cues are set to ∆λ
and ∆v, fλ is the fraction of dominance of percept A when the
speed cue is neutral (∆v = 0) while the wavelength cue has value
∆λ, and fv is the dominance fraction when the wavelength cue is
neutral (∆λ = 0) while the speed cue has value ∆v. This relation
holds whether subjects are sampling from posterior distributions
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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It is well-established that some aspects of perception and action can
be understood as probabilistic inferences over underlying proba-
bility distributions. In some situations, it would be advantageous
for the nervous system to sample interpretations from a probability
distribution rather than commit to a particular interpretation. In
this study, we asked whether visual percepts correspond to sam-
ples from the probability distribution over image interpretations, a
form of sampling that we refer to as Bayesian sampling. To test
this idea, wemanipulated pairs of sensory cues in a bistable display
consisting of two superimposed moving drifting gratings, and we
asked subjects to report their perceived changes in depth ordering.
We report that the fractions of dominance of each percept follow
the multiplicative rule predicted by Bayesian sampling. Further-
more, we show that attractor neural networks can sample proba-
bility distributions if input currents add linearly and encode
probability distributions with probabilistic population codes.

Bayesian inference | neuronal network | neuronal noise | perceptual
bistability

There is mounting evidence that neural circuits can implement
probabilistic inferences over sensory, cognitive, or motor

variables. In some cases, humans can perform these inferences
optimally, as in multi-cue or multisensory integration (1–8). For
complex tasks, such as object recognition, action perception, and
object tracking, the computations required for optimal inference
are intractable, which implies that humans must use approximate
inferences (9–11). One approximate scheme that is particularly
appealing from a biological point of view is sampling. Consider
as an example the problem of object recognition. The goal of
the inference in this case would be to compute the probability over
object identities given the image. Although this probability dis-
tribution may be difficult to compute explicitly, one can often
design algorithms to generate samples from the distribution,
allowing one to perform approximate inference (12, 13). Some
human cognitive choice behaviors suggest that the nervous system
implements sampling. However, whether the same is true for low-
level perceptual processing is currently unknown.
Stimuli that lead to bistable percepts (14–18), like the Necker

cube, provide a tractable experimental preparation for testing the
sampling hypothesis. With such stimuli, perception alternates
stochastically between two possible interpretations, a behavior
consistent with sampling as suggested by several works (16, 19,
20). However, the key question is what probability distribution is
being sampled. If the brain uses sampling for Bayesian inference,
neural circuits should sample from an internal probability distri-
bution on possible stimulus interpretations that are conditioned
on the available sensory data, the so-called posterior distribution.
This distribution places important constraints on the distributions
of perceptual states for bistable stimuli.
To test this idea, we used stimuli composed of two drifting

gratings whose depth ordering is ambiguous (21). We then ma-
nipulated two depth cues to vary the fractions of dominance of the
percepts. Our central prediction is that the fractions of dominance
of each percept should behave as probabilities if they are the re-
sult of a sampling process of a posterior distribution over image
interpretations. We will refer to this form of sampling as Bayesian
sampling. First, we show that subjects’ fractions of dominance in
different cue conditions follow the same multiplicative rule as

probabilities in the Bayesian calculus, suggesting that bistable
perception is indeed a form of Bayesian sampling. Second, we
describe possible neural implementations of a Bayesian sampling
process using attractor networks, and we discuss the link with
probabilistic population codes (22).

Results
Multiplicative Rule for Combining Empirical Fractions of Dominance.
We asked subjects to report their spontaneous alternations in
perceived depth ordering of two superimposed moving gratings
over a 1-min period and measured the fraction of dominance time
for each percept (Methods and Fig. 1A). In the first experiment,
the two drifting gratings, α and β, were parameterized by their
wavelength and speed. One of the wavelengths was always set to
a fixed value λ*, and one of the speeds was set to a fixed value v*.
The remaining wavelength and speed parameters, λ and v, re-
spectively, determined the difference in wavelength and speed
between gratings α and β, denoted ∆λ and ∆v, and hence, the
information for choosing grating α as the one behind. We refer to
these differences as the cues to depth ordering, and we refer to
the condition where the two differences are zero as the neutral
cue condition (∆λ = 0 and ∆v = 0). These cues have been shown
to have a strong effect on the depth ordering of the gratings be-
cause of their relationship with the natural statistics of wavelength
and speed of distant objects (21). In the second experiment, we
manipulated wavelength and disparity, d, of the gratings. In this
case, the label v should be interchanged with the label d.
According to the Bayesian sampling hypothesis, the empirical

fractions of dominance arise from a process that samples the
posterior distribution on possible scene interpretations given the
sensory input. As we show in SI Methods, when two conditionally
independent cues are available (i.e., the values of the cues are
independent when conditioned on true depth), an optimal sys-
tem should sample from a probability distribution given by the
normalized product of the probability distributions derived by
varying each cue in isolation while keeping the other cue neutral.
Our hypothesis implies that the empirical fractions should be-
have as probabilities, and therefore, they should follow the
multiplicative rule (Eq. 1)

fλv ¼ fλ fv
fλ fv þ ð1− fλÞð1− fvÞ

; [1]

where fλv is the fraction of time that subjects report percept A
(grating α moving behind grating β) when the cues are set to ∆λ
and ∆v, fλ is the fraction of dominance of percept A when the
speed cue is neutral (∆v = 0) while the wavelength cue has value
∆λ, and fv is the dominance fraction when the wavelength cue is
neutral (∆λ = 0) while the speed cue has value ∆v. This relation
holds whether subjects are sampling from posterior distributions
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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It is well-established that some aspects of perception and action can
be understood as probabilistic inferences over underlying proba-
bility distributions. In some situations, it would be advantageous
for the nervous system to sample interpretations from a probability
distribution rather than commit to a particular interpretation. In
this study, we asked whether visual percepts correspond to sam-
ples from the probability distribution over image interpretations, a
form of sampling that we refer to as Bayesian sampling. To test
this idea, wemanipulated pairs of sensory cues in a bistable display
consisting of two superimposed moving drifting gratings, and we
asked subjects to report their perceived changes in depth ordering.
We report that the fractions of dominance of each percept follow
the multiplicative rule predicted by Bayesian sampling. Further-
more, we show that attractor neural networks can sample proba-
bility distributions if input currents add linearly and encode
probability distributions with probabilistic population codes.

Bayesian inference | neuronal network | neuronal noise | perceptual
bistability

There is mounting evidence that neural circuits can implement
probabilistic inferences over sensory, cognitive, or motor

variables. In some cases, humans can perform these inferences
optimally, as in multi-cue or multisensory integration (1–8). For
complex tasks, such as object recognition, action perception, and
object tracking, the computations required for optimal inference
are intractable, which implies that humans must use approximate
inferences (9–11). One approximate scheme that is particularly
appealing from a biological point of view is sampling. Consider
as an example the problem of object recognition. The goal of
the inference in this case would be to compute the probability over
object identities given the image. Although this probability dis-
tribution may be difficult to compute explicitly, one can often
design algorithms to generate samples from the distribution,
allowing one to perform approximate inference (12, 13). Some
human cognitive choice behaviors suggest that the nervous system
implements sampling. However, whether the same is true for low-
level perceptual processing is currently unknown.
Stimuli that lead to bistable percepts (14–18), like the Necker

cube, provide a tractable experimental preparation for testing the
sampling hypothesis. With such stimuli, perception alternates
stochastically between two possible interpretations, a behavior
consistent with sampling as suggested by several works (16, 19,
20). However, the key question is what probability distribution is
being sampled. If the brain uses sampling for Bayesian inference,
neural circuits should sample from an internal probability distri-
bution on possible stimulus interpretations that are conditioned
on the available sensory data, the so-called posterior distribution.
This distribution places important constraints on the distributions
of perceptual states for bistable stimuli.
To test this idea, we used stimuli composed of two drifting

gratings whose depth ordering is ambiguous (21). We then ma-
nipulated two depth cues to vary the fractions of dominance of the
percepts. Our central prediction is that the fractions of dominance
of each percept should behave as probabilities if they are the re-
sult of a sampling process of a posterior distribution over image
interpretations. We will refer to this form of sampling as Bayesian
sampling. First, we show that subjects’ fractions of dominance in
different cue conditions follow the same multiplicative rule as

probabilities in the Bayesian calculus, suggesting that bistable
perception is indeed a form of Bayesian sampling. Second, we
describe possible neural implementations of a Bayesian sampling
process using attractor networks, and we discuss the link with
probabilistic population codes (22).

Results
Multiplicative Rule for Combining Empirical Fractions of Dominance.
We asked subjects to report their spontaneous alternations in
perceived depth ordering of two superimposed moving gratings
over a 1-min period and measured the fraction of dominance time
for each percept (Methods and Fig. 1A). In the first experiment,
the two drifting gratings, α and β, were parameterized by their
wavelength and speed. One of the wavelengths was always set to
a fixed value λ*, and one of the speeds was set to a fixed value v*.
The remaining wavelength and speed parameters, λ and v, re-
spectively, determined the difference in wavelength and speed
between gratings α and β, denoted ∆λ and ∆v, and hence, the
information for choosing grating α as the one behind. We refer to
these differences as the cues to depth ordering, and we refer to
the condition where the two differences are zero as the neutral
cue condition (∆λ = 0 and ∆v = 0). These cues have been shown
to have a strong effect on the depth ordering of the gratings be-
cause of their relationship with the natural statistics of wavelength
and speed of distant objects (21). In the second experiment, we
manipulated wavelength and disparity, d, of the gratings. In this
case, the label v should be interchanged with the label d.
According to the Bayesian sampling hypothesis, the empirical

fractions of dominance arise from a process that samples the
posterior distribution on possible scene interpretations given the
sensory input. As we show in SI Methods, when two conditionally
independent cues are available (i.e., the values of the cues are
independent when conditioned on true depth), an optimal sys-
tem should sample from a probability distribution given by the
normalized product of the probability distributions derived by
varying each cue in isolation while keeping the other cue neutral.
Our hypothesis implies that the empirical fractions should be-
have as probabilities, and therefore, they should follow the
multiplicative rule (Eq. 1)

fλv ¼ fλ fv
fλ fv þ ð1− fλÞð1− fvÞ

; [1]

where fλv is the fraction of time that subjects report percept A
(grating α moving behind grating β) when the cues are set to ∆λ
and ∆v, fλ is the fraction of dominance of percept A when the
speed cue is neutral (∆v = 0) while the wavelength cue has value
∆λ, and fv is the dominance fraction when the wavelength cue is
neutral (∆λ = 0) while the speed cue has value ∆v. This relation
holds whether subjects are sampling from posterior distributions
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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It is well-established that some aspects of perception and action can
be understood as probabilistic inferences over underlying proba-
bility distributions. In some situations, it would be advantageous
for the nervous system to sample interpretations from a probability
distribution rather than commit to a particular interpretation. In
this study, we asked whether visual percepts correspond to sam-
ples from the probability distribution over image interpretations, a
form of sampling that we refer to as Bayesian sampling. To test
this idea, wemanipulated pairs of sensory cues in a bistable display
consisting of two superimposed moving drifting gratings, and we
asked subjects to report their perceived changes in depth ordering.
We report that the fractions of dominance of each percept follow
the multiplicative rule predicted by Bayesian sampling. Further-
more, we show that attractor neural networks can sample proba-
bility distributions if input currents add linearly and encode
probability distributions with probabilistic population codes.

Bayesian inference | neuronal network | neuronal noise | perceptual
bistability

There is mounting evidence that neural circuits can implement
probabilistic inferences over sensory, cognitive, or motor

variables. In some cases, humans can perform these inferences
optimally, as in multi-cue or multisensory integration (1–8). For
complex tasks, such as object recognition, action perception, and
object tracking, the computations required for optimal inference
are intractable, which implies that humans must use approximate
inferences (9–11). One approximate scheme that is particularly
appealing from a biological point of view is sampling. Consider
as an example the problem of object recognition. The goal of
the inference in this case would be to compute the probability over
object identities given the image. Although this probability dis-
tribution may be difficult to compute explicitly, one can often
design algorithms to generate samples from the distribution,
allowing one to perform approximate inference (12, 13). Some
human cognitive choice behaviors suggest that the nervous system
implements sampling. However, whether the same is true for low-
level perceptual processing is currently unknown.
Stimuli that lead to bistable percepts (14–18), like the Necker

cube, provide a tractable experimental preparation for testing the
sampling hypothesis. With such stimuli, perception alternates
stochastically between two possible interpretations, a behavior
consistent with sampling as suggested by several works (16, 19,
20). However, the key question is what probability distribution is
being sampled. If the brain uses sampling for Bayesian inference,
neural circuits should sample from an internal probability distri-
bution on possible stimulus interpretations that are conditioned
on the available sensory data, the so-called posterior distribution.
This distribution places important constraints on the distributions
of perceptual states for bistable stimuli.
To test this idea, we used stimuli composed of two drifting

gratings whose depth ordering is ambiguous (21). We then ma-
nipulated two depth cues to vary the fractions of dominance of the
percepts. Our central prediction is that the fractions of dominance
of each percept should behave as probabilities if they are the re-
sult of a sampling process of a posterior distribution over image
interpretations. We will refer to this form of sampling as Bayesian
sampling. First, we show that subjects’ fractions of dominance in
different cue conditions follow the same multiplicative rule as

probabilities in the Bayesian calculus, suggesting that bistable
perception is indeed a form of Bayesian sampling. Second, we
describe possible neural implementations of a Bayesian sampling
process using attractor networks, and we discuss the link with
probabilistic population codes (22).

Results
Multiplicative Rule for Combining Empirical Fractions of Dominance.
We asked subjects to report their spontaneous alternations in
perceived depth ordering of two superimposed moving gratings
over a 1-min period and measured the fraction of dominance time
for each percept (Methods and Fig. 1A). In the first experiment,
the two drifting gratings, α and β, were parameterized by their
wavelength and speed. One of the wavelengths was always set to
a fixed value λ*, and one of the speeds was set to a fixed value v*.
The remaining wavelength and speed parameters, λ and v, re-
spectively, determined the difference in wavelength and speed
between gratings α and β, denoted ∆λ and ∆v, and hence, the
information for choosing grating α as the one behind. We refer to
these differences as the cues to depth ordering, and we refer to
the condition where the two differences are zero as the neutral
cue condition (∆λ = 0 and ∆v = 0). These cues have been shown
to have a strong effect on the depth ordering of the gratings be-
cause of their relationship with the natural statistics of wavelength
and speed of distant objects (21). In the second experiment, we
manipulated wavelength and disparity, d, of the gratings. In this
case, the label v should be interchanged with the label d.
According to the Bayesian sampling hypothesis, the empirical

fractions of dominance arise from a process that samples the
posterior distribution on possible scene interpretations given the
sensory input. As we show in SI Methods, when two conditionally
independent cues are available (i.e., the values of the cues are
independent when conditioned on true depth), an optimal sys-
tem should sample from a probability distribution given by the
normalized product of the probability distributions derived by
varying each cue in isolation while keeping the other cue neutral.
Our hypothesis implies that the empirical fractions should be-
have as probabilities, and therefore, they should follow the
multiplicative rule (Eq. 1)

fλv ¼ fλ fv
fλ fv þ ð1− fλÞð1− fvÞ

; [1]

where fλv is the fraction of time that subjects report percept A
(grating α moving behind grating β) when the cues are set to ∆λ
and ∆v, fλ is the fraction of dominance of percept A when the
speed cue is neutral (∆v = 0) while the wavelength cue has value
∆λ, and fv is the dominance fraction when the wavelength cue is
neutral (∆λ = 0) while the speed cue has value ∆v. This relation
holds whether subjects are sampling from posterior distributions
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It is well-established that some aspects of perception and action can
be understood as probabilistic inferences over underlying proba-
bility distributions. In some situations, it would be advantageous
for the nervous system to sample interpretations from a probability
distribution rather than commit to a particular interpretation. In
this study, we asked whether visual percepts correspond to sam-
ples from the probability distribution over image interpretations, a
form of sampling that we refer to as Bayesian sampling. To test
this idea, wemanipulated pairs of sensory cues in a bistable display
consisting of two superimposed moving drifting gratings, and we
asked subjects to report their perceived changes in depth ordering.
We report that the fractions of dominance of each percept follow
the multiplicative rule predicted by Bayesian sampling. Further-
more, we show that attractor neural networks can sample proba-
bility distributions if input currents add linearly and encode
probability distributions with probabilistic population codes.

Bayesian inference | neuronal network | neuronal noise | perceptual
bistability

There is mounting evidence that neural circuits can implement
probabilistic inferences over sensory, cognitive, or motor

variables. In some cases, humans can perform these inferences
optimally, as in multi-cue or multisensory integration (1–8). For
complex tasks, such as object recognition, action perception, and
object tracking, the computations required for optimal inference
are intractable, which implies that humans must use approximate
inferences (9–11). One approximate scheme that is particularly
appealing from a biological point of view is sampling. Consider
as an example the problem of object recognition. The goal of
the inference in this case would be to compute the probability over
object identities given the image. Although this probability dis-
tribution may be difficult to compute explicitly, one can often
design algorithms to generate samples from the distribution,
allowing one to perform approximate inference (12, 13). Some
human cognitive choice behaviors suggest that the nervous system
implements sampling. However, whether the same is true for low-
level perceptual processing is currently unknown.
Stimuli that lead to bistable percepts (14–18), like the Necker

cube, provide a tractable experimental preparation for testing the
sampling hypothesis. With such stimuli, perception alternates
stochastically between two possible interpretations, a behavior
consistent with sampling as suggested by several works (16, 19,
20). However, the key question is what probability distribution is
being sampled. If the brain uses sampling for Bayesian inference,
neural circuits should sample from an internal probability distri-
bution on possible stimulus interpretations that are conditioned
on the available sensory data, the so-called posterior distribution.
This distribution places important constraints on the distributions
of perceptual states for bistable stimuli.
To test this idea, we used stimuli composed of two drifting

gratings whose depth ordering is ambiguous (21). We then ma-
nipulated two depth cues to vary the fractions of dominance of the
percepts. Our central prediction is that the fractions of dominance
of each percept should behave as probabilities if they are the re-
sult of a sampling process of a posterior distribution over image
interpretations. We will refer to this form of sampling as Bayesian
sampling. First, we show that subjects’ fractions of dominance in
different cue conditions follow the same multiplicative rule as

probabilities in the Bayesian calculus, suggesting that bistable
perception is indeed a form of Bayesian sampling. Second, we
describe possible neural implementations of a Bayesian sampling
process using attractor networks, and we discuss the link with
probabilistic population codes (22).

Results
Multiplicative Rule for Combining Empirical Fractions of Dominance.
We asked subjects to report their spontaneous alternations in
perceived depth ordering of two superimposed moving gratings
over a 1-min period and measured the fraction of dominance time
for each percept (Methods and Fig. 1A). In the first experiment,
the two drifting gratings, α and β, were parameterized by their
wavelength and speed. One of the wavelengths was always set to
a fixed value λ*, and one of the speeds was set to a fixed value v*.
The remaining wavelength and speed parameters, λ and v, re-
spectively, determined the difference in wavelength and speed
between gratings α and β, denoted ∆λ and ∆v, and hence, the
information for choosing grating α as the one behind. We refer to
these differences as the cues to depth ordering, and we refer to
the condition where the two differences are zero as the neutral
cue condition (∆λ = 0 and ∆v = 0). These cues have been shown
to have a strong effect on the depth ordering of the gratings be-
cause of their relationship with the natural statistics of wavelength
and speed of distant objects (21). In the second experiment, we
manipulated wavelength and disparity, d, of the gratings. In this
case, the label v should be interchanged with the label d.
According to the Bayesian sampling hypothesis, the empirical

fractions of dominance arise from a process that samples the
posterior distribution on possible scene interpretations given the
sensory input. As we show in SI Methods, when two conditionally
independent cues are available (i.e., the values of the cues are
independent when conditioned on true depth), an optimal sys-
tem should sample from a probability distribution given by the
normalized product of the probability distributions derived by
varying each cue in isolation while keeping the other cue neutral.
Our hypothesis implies that the empirical fractions should be-
have as probabilities, and therefore, they should follow the
multiplicative rule (Eq. 1)

fλv ¼ fλ fv
fλ fv þ ð1− fλÞð1− fvÞ

; [1]

where fλv is the fraction of time that subjects report percept A
(grating α moving behind grating β) when the cues are set to ∆λ
and ∆v, fλ is the fraction of dominance of percept A when the
speed cue is neutral (∆v = 0) while the wavelength cue has value
∆λ, and fv is the dominance fraction when the wavelength cue is
neutral (∆λ = 0) while the speed cue has value ∆v. This relation
holds whether subjects are sampling from posterior distributions
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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It is well-established that some aspects of perception and action can
be understood as probabilistic inferences over underlying proba-
bility distributions. In some situations, it would be advantageous
for the nervous system to sample interpretations from a probability
distribution rather than commit to a particular interpretation. In
this study, we asked whether visual percepts correspond to sam-
ples from the probability distribution over image interpretations, a
form of sampling that we refer to as Bayesian sampling. To test
this idea, wemanipulated pairs of sensory cues in a bistable display
consisting of two superimposed moving drifting gratings, and we
asked subjects to report their perceived changes in depth ordering.
We report that the fractions of dominance of each percept follow
the multiplicative rule predicted by Bayesian sampling. Further-
more, we show that attractor neural networks can sample proba-
bility distributions if input currents add linearly and encode
probability distributions with probabilistic population codes.

Bayesian inference | neuronal network | neuronal noise | perceptual
bistability

There is mounting evidence that neural circuits can implement
probabilistic inferences over sensory, cognitive, or motor

variables. In some cases, humans can perform these inferences
optimally, as in multi-cue or multisensory integration (1–8). For
complex tasks, such as object recognition, action perception, and
object tracking, the computations required for optimal inference
are intractable, which implies that humans must use approximate
inferences (9–11). One approximate scheme that is particularly
appealing from a biological point of view is sampling. Consider
as an example the problem of object recognition. The goal of
the inference in this case would be to compute the probability over
object identities given the image. Although this probability dis-
tribution may be difficult to compute explicitly, one can often
design algorithms to generate samples from the distribution,
allowing one to perform approximate inference (12, 13). Some
human cognitive choice behaviors suggest that the nervous system
implements sampling. However, whether the same is true for low-
level perceptual processing is currently unknown.
Stimuli that lead to bistable percepts (14–18), like the Necker

cube, provide a tractable experimental preparation for testing the
sampling hypothesis. With such stimuli, perception alternates
stochastically between two possible interpretations, a behavior
consistent with sampling as suggested by several works (16, 19,
20). However, the key question is what probability distribution is
being sampled. If the brain uses sampling for Bayesian inference,
neural circuits should sample from an internal probability distri-
bution on possible stimulus interpretations that are conditioned
on the available sensory data, the so-called posterior distribution.
This distribution places important constraints on the distributions
of perceptual states for bistable stimuli.
To test this idea, we used stimuli composed of two drifting

gratings whose depth ordering is ambiguous (21). We then ma-
nipulated two depth cues to vary the fractions of dominance of the
percepts. Our central prediction is that the fractions of dominance
of each percept should behave as probabilities if they are the re-
sult of a sampling process of a posterior distribution over image
interpretations. We will refer to this form of sampling as Bayesian
sampling. First, we show that subjects’ fractions of dominance in
different cue conditions follow the same multiplicative rule as

probabilities in the Bayesian calculus, suggesting that bistable
perception is indeed a form of Bayesian sampling. Second, we
describe possible neural implementations of a Bayesian sampling
process using attractor networks, and we discuss the link with
probabilistic population codes (22).

Results
Multiplicative Rule for Combining Empirical Fractions of Dominance.
We asked subjects to report their spontaneous alternations in
perceived depth ordering of two superimposed moving gratings
over a 1-min period and measured the fraction of dominance time
for each percept (Methods and Fig. 1A). In the first experiment,
the two drifting gratings, α and β, were parameterized by their
wavelength and speed. One of the wavelengths was always set to
a fixed value λ*, and one of the speeds was set to a fixed value v*.
The remaining wavelength and speed parameters, λ and v, re-
spectively, determined the difference in wavelength and speed
between gratings α and β, denoted ∆λ and ∆v, and hence, the
information for choosing grating α as the one behind. We refer to
these differences as the cues to depth ordering, and we refer to
the condition where the two differences are zero as the neutral
cue condition (∆λ = 0 and ∆v = 0). These cues have been shown
to have a strong effect on the depth ordering of the gratings be-
cause of their relationship with the natural statistics of wavelength
and speed of distant objects (21). In the second experiment, we
manipulated wavelength and disparity, d, of the gratings. In this
case, the label v should be interchanged with the label d.
According to the Bayesian sampling hypothesis, the empirical

fractions of dominance arise from a process that samples the
posterior distribution on possible scene interpretations given the
sensory input. As we show in SI Methods, when two conditionally
independent cues are available (i.e., the values of the cues are
independent when conditioned on true depth), an optimal sys-
tem should sample from a probability distribution given by the
normalized product of the probability distributions derived by
varying each cue in isolation while keeping the other cue neutral.
Our hypothesis implies that the empirical fractions should be-
have as probabilities, and therefore, they should follow the
multiplicative rule (Eq. 1)

fλv ¼ fλ fv
fλ fv þ ð1− fλÞð1− fvÞ

; [1]

where fλv is the fraction of time that subjects report percept A
(grating α moving behind grating β) when the cues are set to ∆λ
and ∆v, fλ is the fraction of dominance of percept A when the
speed cue is neutral (∆v = 0) while the wavelength cue has value
∆λ, and fv is the dominance fraction when the wavelength cue is
neutral (∆λ = 0) while the speed cue has value ∆v. This relation
holds whether subjects are sampling from posterior distributions
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1101430108 Moreno-Bote et al.

Quantitative consequences of sampling

!19

Moreno Bote et al (2011) PNAS

Bayesian sampling in visual perception
Rubén Moreno-Botea,b,1, David C. Knillb,c, and Alexandre Pougetb

aFoundation Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain; and bDepartment of Brain and Cognitive
Sciences and cCenter for Visual Science, University of Rochester, Rochester, NY, 14627

Edited by Wilson S. Geisler, University of Texas at Austin, Austin, TX, and approved May 31, 2011 (received for review January 27, 2011)

It is well-established that some aspects of perception and action can
be understood as probabilistic inferences over underlying proba-
bility distributions. In some situations, it would be advantageous
for the nervous system to sample interpretations from a probability
distribution rather than commit to a particular interpretation. In
this study, we asked whether visual percepts correspond to sam-
ples from the probability distribution over image interpretations, a
form of sampling that we refer to as Bayesian sampling. To test
this idea, wemanipulated pairs of sensory cues in a bistable display
consisting of two superimposed moving drifting gratings, and we
asked subjects to report their perceived changes in depth ordering.
We report that the fractions of dominance of each percept follow
the multiplicative rule predicted by Bayesian sampling. Further-
more, we show that attractor neural networks can sample proba-
bility distributions if input currents add linearly and encode
probability distributions with probabilistic population codes.

Bayesian inference | neuronal network | neuronal noise | perceptual
bistability

There is mounting evidence that neural circuits can implement
probabilistic inferences over sensory, cognitive, or motor

variables. In some cases, humans can perform these inferences
optimally, as in multi-cue or multisensory integration (1–8). For
complex tasks, such as object recognition, action perception, and
object tracking, the computations required for optimal inference
are intractable, which implies that humans must use approximate
inferences (9–11). One approximate scheme that is particularly
appealing from a biological point of view is sampling. Consider
as an example the problem of object recognition. The goal of
the inference in this case would be to compute the probability over
object identities given the image. Although this probability dis-
tribution may be difficult to compute explicitly, one can often
design algorithms to generate samples from the distribution,
allowing one to perform approximate inference (12, 13). Some
human cognitive choice behaviors suggest that the nervous system
implements sampling. However, whether the same is true for low-
level perceptual processing is currently unknown.
Stimuli that lead to bistable percepts (14–18), like the Necker

cube, provide a tractable experimental preparation for testing the
sampling hypothesis. With such stimuli, perception alternates
stochastically between two possible interpretations, a behavior
consistent with sampling as suggested by several works (16, 19,
20). However, the key question is what probability distribution is
being sampled. If the brain uses sampling for Bayesian inference,
neural circuits should sample from an internal probability distri-
bution on possible stimulus interpretations that are conditioned
on the available sensory data, the so-called posterior distribution.
This distribution places important constraints on the distributions
of perceptual states for bistable stimuli.
To test this idea, we used stimuli composed of two drifting

gratings whose depth ordering is ambiguous (21). We then ma-
nipulated two depth cues to vary the fractions of dominance of the
percepts. Our central prediction is that the fractions of dominance
of each percept should behave as probabilities if they are the re-
sult of a sampling process of a posterior distribution over image
interpretations. We will refer to this form of sampling as Bayesian
sampling. First, we show that subjects’ fractions of dominance in
different cue conditions follow the same multiplicative rule as

probabilities in the Bayesian calculus, suggesting that bistable
perception is indeed a form of Bayesian sampling. Second, we
describe possible neural implementations of a Bayesian sampling
process using attractor networks, and we discuss the link with
probabilistic population codes (22).

Results
Multiplicative Rule for Combining Empirical Fractions of Dominance.
We asked subjects to report their spontaneous alternations in
perceived depth ordering of two superimposed moving gratings
over a 1-min period and measured the fraction of dominance time
for each percept (Methods and Fig. 1A). In the first experiment,
the two drifting gratings, α and β, were parameterized by their
wavelength and speed. One of the wavelengths was always set to
a fixed value λ*, and one of the speeds was set to a fixed value v*.
The remaining wavelength and speed parameters, λ and v, re-
spectively, determined the difference in wavelength and speed
between gratings α and β, denoted ∆λ and ∆v, and hence, the
information for choosing grating α as the one behind. We refer to
these differences as the cues to depth ordering, and we refer to
the condition where the two differences are zero as the neutral
cue condition (∆λ = 0 and ∆v = 0). These cues have been shown
to have a strong effect on the depth ordering of the gratings be-
cause of their relationship with the natural statistics of wavelength
and speed of distant objects (21). In the second experiment, we
manipulated wavelength and disparity, d, of the gratings. In this
case, the label v should be interchanged with the label d.
According to the Bayesian sampling hypothesis, the empirical

fractions of dominance arise from a process that samples the
posterior distribution on possible scene interpretations given the
sensory input. As we show in SI Methods, when two conditionally
independent cues are available (i.e., the values of the cues are
independent when conditioned on true depth), an optimal sys-
tem should sample from a probability distribution given by the
normalized product of the probability distributions derived by
varying each cue in isolation while keeping the other cue neutral.
Our hypothesis implies that the empirical fractions should be-
have as probabilities, and therefore, they should follow the
multiplicative rule (Eq. 1)

fλv ¼ fλ fv
fλ fv þ ð1− fλÞð1− fvÞ

; [1]

where fλv is the fraction of time that subjects report percept A
(grating α moving behind grating β) when the cues are set to ∆λ
and ∆v, fλ is the fraction of dominance of percept A when the
speed cue is neutral (∆v = 0) while the wavelength cue has value
∆λ, and fv is the dominance fraction when the wavelength cue is
neutral (∆λ = 0) while the speed cue has value ∆v. This relation
holds whether subjects are sampling from posterior distributions
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Diffusion in an Energy Model. Our finding that bistable perception
behaves like a Bayesian sampling process raises the issue as to
how neurons could implement such a process. We first show that
implementing the multiplicative rule is surprisingly straightfor-
ward with energy models. In Results, Sampling with Realistic
Neural Circuits, we will present a neural instantiation of this
conceptual framework. We model the dynamics of two neural
populations, A and B, whose states are described by their firing
rates rA and rB, respectively (Fig. 4A). The reduced dynamics
tracks the difference between the firing rates, r = rA − rB, where
r > 0 corresponds to percept A. This variable obeys (Eq. 2)

τ
d
dt
r ¼ − 4rðr2 − 1Þ þ gðIλ; IvÞ þ nðtÞ; [2]

where g(Iλ, Iv) is a bias provided by the inputs and n(t) is a filtered
white noise with variance σ2 (27) (SI Methods). The first term on
the right-hand side ensures that the activity difference, r, hovers
around the centers of the two energy wells (Fig. 4B). The bias term
measures the combined strength of the cues, which is a function of
the individual strengths Iλ and Iv favoring percept A from the
wavelength and speed cues, respectively. The function gðIλ; IvÞ is
chosen such that it is zero when the two cues are neutral (zero

currents) and positive when the two cues favor percept A (the two
currents are positive). The dynamics ofEq. 2 can be viewed as a noisy
descent over the energy landscape EðrÞ ¼ r2ðr2 − 2Þ− gðIλ; IvÞr,
which is symmetrical (Fig. 4B, black line) when the two cues are
neutral and negatively tilted (Fig. 4B, gray line) when the cues favor
perceptA. The resulting dynamics effectively draws samples from an
underlying probability distribution that depends on the input cur-
rents (a process known as Langevin Monte Carlo sampling) (28).
To model the experimental data that we have described, we

need a form of sampling that obeys the multiplicative rule.
Whether the network obeys the rule or not depends critically on
the function gðIλ; IvÞ. We consider here the family of functions
described by gðIλ; IvÞ ¼ Iλ þ Iv þ εðI2λ Iv þ I2v IλÞ, where εmeasures
the strength of the nonlinearity. Similar nonlinear functional
dependences on the input currents naturally arise in neuronal
networks with nonlinear activation functions (Results, Sampling
with Realistic Neural Circuits).
For a value of ε different from zero, the dynamical system does

not follow the multiplicative rule (Fig. 4D). In contrast, if we set
ε to zero, such that gðIλ; IvÞ ¼ Iλ þ Iv, the system now obeys the
multiplicative rule (Fig. 4E). This result can be derived analyti-
cally by computing the mean dominance duration of each per-
cept, which corresponds to the mean escape time from one of the
energy wells (SI Methods). We can then show that the fraction of
dominance of population A for ε equal to zero is a sigmoid
function of the sum of the inputs (Eq. 3)

fλv ¼ f ðs ¼ A j Iλ; IvÞ ¼
1

1þ e− 2ðIλþIvÞ=σ2eff
∝ e ðIλþIvÞ=σ2eff; [3]

where σ2eff is the effective noise in the system and is proportional
to σ2. Note that when only one cue is nonneutral, fi ∝ eIi=σ

2
eff (i= λ,

v), and when both cues are nonneutral, fλv ∝ eðIλþIvÞ=σ2eff . There-
fore, the fractions are related through fλv ∝ fλ × fv, and after
normalization, they follow the multiplicative rule (Eq. 1). Fig. 4F
shows that Eq. 3 is indeed satisfied by the diffusion model, be-
cause the fraction of dominance of percept A obtained from
numerical simulations as a function of the total input current
(Fig. 4F, blue line) is a sigmoid function (Fig. 4F, red line). This

C D

A B

Fig. 2. Experimental and predicted fractions of dominance in the wave-
length and speed cue combination experiment. (A) Fraction of dominance of
percept A (i.e., grating α is behind grating β) as a function of the wavelength
difference between gratings α and β (Δλ = λα − λβ) for three different speed
differences (Δv = vα − vβ) in the congruent condition (both cues favored the
same depth ordering). Data are averaged across subjects, and the error bars
correspond to SEM across subjects. Experimental observations (red and black)
and predictions from the multiplicative rule (blue circles) (Eq. 1) are shown.
The predictions from the multiplicative rule were computed using the ex-
perimental data from the conditions in which only one cue was nonneutral
(open circles). The black open circles correspond to the fractions measured
when the two cues were neutral. The predictions are displaced slightly right
in relation to the experimental data (filled red circles) to allow better visual
comparison. (B) Same as in A but for the incongruent condition (the cues
favored opposite percepts). (C) Predicted fractions of dominance for the
multiplicative rule combining the data from the congruent (C; light blue) and
incongruent (IC; dark blue) conditions from A and B as a function of the
empirical fractions. (D) Same as in C but for the strongest cue take all rule
(brown) and a rate-based model with nonlinear (orange) and linear (blue)
input neurons.

C D

A B

Fig. 3. Experimental and predicted fractions of dominance in the wave-
length and disparity cue combination experiment. A–D are the same as in
Fig. 2 but with speed replaced by disparity.
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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It is well-established that some aspects of perception and action can
be understood as probabilistic inferences over underlying proba-
bility distributions. In some situations, it would be advantageous
for the nervous system to sample interpretations from a probability
distribution rather than commit to a particular interpretation. In
this study, we asked whether visual percepts correspond to sam-
ples from the probability distribution over image interpretations, a
form of sampling that we refer to as Bayesian sampling. To test
this idea, wemanipulated pairs of sensory cues in a bistable display
consisting of two superimposed moving drifting gratings, and we
asked subjects to report their perceived changes in depth ordering.
We report that the fractions of dominance of each percept follow
the multiplicative rule predicted by Bayesian sampling. Further-
more, we show that attractor neural networks can sample proba-
bility distributions if input currents add linearly and encode
probability distributions with probabilistic population codes.

Bayesian inference | neuronal network | neuronal noise | perceptual
bistability

There is mounting evidence that neural circuits can implement
probabilistic inferences over sensory, cognitive, or motor

variables. In some cases, humans can perform these inferences
optimally, as in multi-cue or multisensory integration (1–8). For
complex tasks, such as object recognition, action perception, and
object tracking, the computations required for optimal inference
are intractable, which implies that humans must use approximate
inferences (9–11). One approximate scheme that is particularly
appealing from a biological point of view is sampling. Consider
as an example the problem of object recognition. The goal of
the inference in this case would be to compute the probability over
object identities given the image. Although this probability dis-
tribution may be difficult to compute explicitly, one can often
design algorithms to generate samples from the distribution,
allowing one to perform approximate inference (12, 13). Some
human cognitive choice behaviors suggest that the nervous system
implements sampling. However, whether the same is true for low-
level perceptual processing is currently unknown.
Stimuli that lead to bistable percepts (14–18), like the Necker

cube, provide a tractable experimental preparation for testing the
sampling hypothesis. With such stimuli, perception alternates
stochastically between two possible interpretations, a behavior
consistent with sampling as suggested by several works (16, 19,
20). However, the key question is what probability distribution is
being sampled. If the brain uses sampling for Bayesian inference,
neural circuits should sample from an internal probability distri-
bution on possible stimulus interpretations that are conditioned
on the available sensory data, the so-called posterior distribution.
This distribution places important constraints on the distributions
of perceptual states for bistable stimuli.
To test this idea, we used stimuli composed of two drifting

gratings whose depth ordering is ambiguous (21). We then ma-
nipulated two depth cues to vary the fractions of dominance of the
percepts. Our central prediction is that the fractions of dominance
of each percept should behave as probabilities if they are the re-
sult of a sampling process of a posterior distribution over image
interpretations. We will refer to this form of sampling as Bayesian
sampling. First, we show that subjects’ fractions of dominance in
different cue conditions follow the same multiplicative rule as

probabilities in the Bayesian calculus, suggesting that bistable
perception is indeed a form of Bayesian sampling. Second, we
describe possible neural implementations of a Bayesian sampling
process using attractor networks, and we discuss the link with
probabilistic population codes (22).

Results
Multiplicative Rule for Combining Empirical Fractions of Dominance.
We asked subjects to report their spontaneous alternations in
perceived depth ordering of two superimposed moving gratings
over a 1-min period and measured the fraction of dominance time
for each percept (Methods and Fig. 1A). In the first experiment,
the two drifting gratings, α and β, were parameterized by their
wavelength and speed. One of the wavelengths was always set to
a fixed value λ*, and one of the speeds was set to a fixed value v*.
The remaining wavelength and speed parameters, λ and v, re-
spectively, determined the difference in wavelength and speed
between gratings α and β, denoted ∆λ and ∆v, and hence, the
information for choosing grating α as the one behind. We refer to
these differences as the cues to depth ordering, and we refer to
the condition where the two differences are zero as the neutral
cue condition (∆λ = 0 and ∆v = 0). These cues have been shown
to have a strong effect on the depth ordering of the gratings be-
cause of their relationship with the natural statistics of wavelength
and speed of distant objects (21). In the second experiment, we
manipulated wavelength and disparity, d, of the gratings. In this
case, the label v should be interchanged with the label d.
According to the Bayesian sampling hypothesis, the empirical

fractions of dominance arise from a process that samples the
posterior distribution on possible scene interpretations given the
sensory input. As we show in SI Methods, when two conditionally
independent cues are available (i.e., the values of the cues are
independent when conditioned on true depth), an optimal sys-
tem should sample from a probability distribution given by the
normalized product of the probability distributions derived by
varying each cue in isolation while keeping the other cue neutral.
Our hypothesis implies that the empirical fractions should be-
have as probabilities, and therefore, they should follow the
multiplicative rule (Eq. 1)

fλv ¼ fλ fv
fλ fv þ ð1− fλÞð1− fvÞ

; [1]

where fλv is the fraction of time that subjects report percept A
(grating α moving behind grating β) when the cues are set to ∆λ
and ∆v, fλ is the fraction of dominance of percept A when the
speed cue is neutral (∆v = 0) while the wavelength cue has value
∆λ, and fv is the dominance fraction when the wavelength cue is
neutral (∆λ = 0) while the speed cue has value ∆v. This relation
holds whether subjects are sampling from posterior distributions
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Diffusion in an Energy Model. Our finding that bistable perception
behaves like a Bayesian sampling process raises the issue as to
how neurons could implement such a process. We first show that
implementing the multiplicative rule is surprisingly straightfor-
ward with energy models. In Results, Sampling with Realistic
Neural Circuits, we will present a neural instantiation of this
conceptual framework. We model the dynamics of two neural
populations, A and B, whose states are described by their firing
rates rA and rB, respectively (Fig. 4A). The reduced dynamics
tracks the difference between the firing rates, r = rA − rB, where
r > 0 corresponds to percept A. This variable obeys (Eq. 2)

τ
d
dt
r ¼ − 4rðr2 − 1Þ þ gðIλ; IvÞ þ nðtÞ; [2]

where g(Iλ, Iv) is a bias provided by the inputs and n(t) is a filtered
white noise with variance σ2 (27) (SI Methods). The first term on
the right-hand side ensures that the activity difference, r, hovers
around the centers of the two energy wells (Fig. 4B). The bias term
measures the combined strength of the cues, which is a function of
the individual strengths Iλ and Iv favoring percept A from the
wavelength and speed cues, respectively. The function gðIλ; IvÞ is
chosen such that it is zero when the two cues are neutral (zero

currents) and positive when the two cues favor percept A (the two
currents are positive). The dynamics ofEq. 2 can be viewed as a noisy
descent over the energy landscape EðrÞ ¼ r2ðr2 − 2Þ− gðIλ; IvÞr,
which is symmetrical (Fig. 4B, black line) when the two cues are
neutral and negatively tilted (Fig. 4B, gray line) when the cues favor
perceptA. The resulting dynamics effectively draws samples from an
underlying probability distribution that depends on the input cur-
rents (a process known as Langevin Monte Carlo sampling) (28).
To model the experimental data that we have described, we

need a form of sampling that obeys the multiplicative rule.
Whether the network obeys the rule or not depends critically on
the function gðIλ; IvÞ. We consider here the family of functions
described by gðIλ; IvÞ ¼ Iλ þ Iv þ εðI2λ Iv þ I2v IλÞ, where εmeasures
the strength of the nonlinearity. Similar nonlinear functional
dependences on the input currents naturally arise in neuronal
networks with nonlinear activation functions (Results, Sampling
with Realistic Neural Circuits).
For a value of ε different from zero, the dynamical system does

not follow the multiplicative rule (Fig. 4D). In contrast, if we set
ε to zero, such that gðIλ; IvÞ ¼ Iλ þ Iv, the system now obeys the
multiplicative rule (Fig. 4E). This result can be derived analyti-
cally by computing the mean dominance duration of each per-
cept, which corresponds to the mean escape time from one of the
energy wells (SI Methods). We can then show that the fraction of
dominance of population A for ε equal to zero is a sigmoid
function of the sum of the inputs (Eq. 3)

fλv ¼ f ðs ¼ A j Iλ; IvÞ ¼
1

1þ e− 2ðIλþIvÞ=σ2eff
∝ e ðIλþIvÞ=σ2eff; [3]

where σ2eff is the effective noise in the system and is proportional
to σ2. Note that when only one cue is nonneutral, fi ∝ eIi=σ

2
eff (i= λ,

v), and when both cues are nonneutral, fλv ∝ eðIλþIvÞ=σ2eff . There-
fore, the fractions are related through fλv ∝ fλ × fv, and after
normalization, they follow the multiplicative rule (Eq. 1). Fig. 4F
shows that Eq. 3 is indeed satisfied by the diffusion model, be-
cause the fraction of dominance of percept A obtained from
numerical simulations as a function of the total input current
(Fig. 4F, blue line) is a sigmoid function (Fig. 4F, red line). This

C D

A B

Fig. 2. Experimental and predicted fractions of dominance in the wave-
length and speed cue combination experiment. (A) Fraction of dominance of
percept A (i.e., grating α is behind grating β) as a function of the wavelength
difference between gratings α and β (Δλ = λα − λβ) for three different speed
differences (Δv = vα − vβ) in the congruent condition (both cues favored the
same depth ordering). Data are averaged across subjects, and the error bars
correspond to SEM across subjects. Experimental observations (red and black)
and predictions from the multiplicative rule (blue circles) (Eq. 1) are shown.
The predictions from the multiplicative rule were computed using the ex-
perimental data from the conditions in which only one cue was nonneutral
(open circles). The black open circles correspond to the fractions measured
when the two cues were neutral. The predictions are displaced slightly right
in relation to the experimental data (filled red circles) to allow better visual
comparison. (B) Same as in A but for the incongruent condition (the cues
favored opposite percepts). (C) Predicted fractions of dominance for the
multiplicative rule combining the data from the congruent (C; light blue) and
incongruent (IC; dark blue) conditions from A and B as a function of the
empirical fractions. (D) Same as in C but for the strongest cue take all rule
(brown) and a rate-based model with nonlinear (orange) and linear (blue)
input neurons.

C D

A B

Fig. 3. Experimental and predicted fractions of dominance in the wave-
length and disparity cue combination experiment. A–D are the same as in
Fig. 2 but with speed replaced by disparity.
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Diffusion in an Energy Model. Our finding that bistable perception
behaves like a Bayesian sampling process raises the issue as to
how neurons could implement such a process. We first show that
implementing the multiplicative rule is surprisingly straightfor-
ward with energy models. In Results, Sampling with Realistic
Neural Circuits, we will present a neural instantiation of this
conceptual framework. We model the dynamics of two neural
populations, A and B, whose states are described by their firing
rates rA and rB, respectively (Fig. 4A). The reduced dynamics
tracks the difference between the firing rates, r = rA − rB, where
r > 0 corresponds to percept A. This variable obeys (Eq. 2)

τ
d
dt
r ¼ − 4rðr2 − 1Þ þ gðIλ; IvÞ þ nðtÞ; [2]

where g(Iλ, Iv) is a bias provided by the inputs and n(t) is a filtered
white noise with variance σ2 (27) (SI Methods). The first term on
the right-hand side ensures that the activity difference, r, hovers
around the centers of the two energy wells (Fig. 4B). The bias term
measures the combined strength of the cues, which is a function of
the individual strengths Iλ and Iv favoring percept A from the
wavelength and speed cues, respectively. The function gðIλ; IvÞ is
chosen such that it is zero when the two cues are neutral (zero

currents) and positive when the two cues favor percept A (the two
currents are positive). The dynamics ofEq. 2 can be viewed as a noisy
descent over the energy landscape EðrÞ ¼ r2ðr2 − 2Þ− gðIλ; IvÞr,
which is symmetrical (Fig. 4B, black line) when the two cues are
neutral and negatively tilted (Fig. 4B, gray line) when the cues favor
perceptA. The resulting dynamics effectively draws samples from an
underlying probability distribution that depends on the input cur-
rents (a process known as Langevin Monte Carlo sampling) (28).
To model the experimental data that we have described, we

need a form of sampling that obeys the multiplicative rule.
Whether the network obeys the rule or not depends critically on
the function gðIλ; IvÞ. We consider here the family of functions
described by gðIλ; IvÞ ¼ Iλ þ Iv þ εðI2λ Iv þ I2v IλÞ, where εmeasures
the strength of the nonlinearity. Similar nonlinear functional
dependences on the input currents naturally arise in neuronal
networks with nonlinear activation functions (Results, Sampling
with Realistic Neural Circuits).
For a value of ε different from zero, the dynamical system does

not follow the multiplicative rule (Fig. 4D). In contrast, if we set
ε to zero, such that gðIλ; IvÞ ¼ Iλ þ Iv, the system now obeys the
multiplicative rule (Fig. 4E). This result can be derived analyti-
cally by computing the mean dominance duration of each per-
cept, which corresponds to the mean escape time from one of the
energy wells (SI Methods). We can then show that the fraction of
dominance of population A for ε equal to zero is a sigmoid
function of the sum of the inputs (Eq. 3)

fλv ¼ f ðs ¼ A j Iλ; IvÞ ¼
1

1þ e− 2ðIλþIvÞ=σ2eff
∝ e ðIλþIvÞ=σ2eff; [3]

where σ2eff is the effective noise in the system and is proportional
to σ2. Note that when only one cue is nonneutral, fi ∝ eIi=σ

2
eff (i= λ,

v), and when both cues are nonneutral, fλv ∝ eðIλþIvÞ=σ2eff . There-
fore, the fractions are related through fλv ∝ fλ × fv, and after
normalization, they follow the multiplicative rule (Eq. 1). Fig. 4F
shows that Eq. 3 is indeed satisfied by the diffusion model, be-
cause the fraction of dominance of percept A obtained from
numerical simulations as a function of the total input current
(Fig. 4F, blue line) is a sigmoid function (Fig. 4F, red line). This

C D

A B

Fig. 2. Experimental and predicted fractions of dominance in the wave-
length and speed cue combination experiment. (A) Fraction of dominance of
percept A (i.e., grating α is behind grating β) as a function of the wavelength
difference between gratings α and β (Δλ = λα − λβ) for three different speed
differences (Δv = vα − vβ) in the congruent condition (both cues favored the
same depth ordering). Data are averaged across subjects, and the error bars
correspond to SEM across subjects. Experimental observations (red and black)
and predictions from the multiplicative rule (blue circles) (Eq. 1) are shown.
The predictions from the multiplicative rule were computed using the ex-
perimental data from the conditions in which only one cue was nonneutral
(open circles). The black open circles correspond to the fractions measured
when the two cues were neutral. The predictions are displaced slightly right
in relation to the experimental data (filled red circles) to allow better visual
comparison. (B) Same as in A but for the incongruent condition (the cues
favored opposite percepts). (C) Predicted fractions of dominance for the
multiplicative rule combining the data from the congruent (C; light blue) and
incongruent (IC; dark blue) conditions from A and B as a function of the
empirical fractions. (D) Same as in C but for the strongest cue take all rule
(brown) and a rate-based model with nonlinear (orange) and linear (blue)
input neurons.

C D

A B

Fig. 3. Experimental and predicted fractions of dominance in the wave-
length and disparity cue combination experiment. A–D are the same as in
Fig. 2 but with speed replaced by disparity.
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, ∆λ
and ∆v, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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It is well-established that some aspects of perception and action can
be understood as probabilistic inferences over underlying proba-
bility distributions. In some situations, it would be advantageous
for the nervous system to sample interpretations from a probability
distribution rather than commit to a particular interpretation. In
this study, we asked whether visual percepts correspond to sam-
ples from the probability distribution over image interpretations, a
form of sampling that we refer to as Bayesian sampling. To test
this idea, wemanipulated pairs of sensory cues in a bistable display
consisting of two superimposed moving drifting gratings, and we
asked subjects to report their perceived changes in depth ordering.
We report that the fractions of dominance of each percept follow
the multiplicative rule predicted by Bayesian sampling. Further-
more, we show that attractor neural networks can sample proba-
bility distributions if input currents add linearly and encode
probability distributions with probabilistic population codes.

Bayesian inference | neuronal network | neuronal noise | perceptual
bistability

There is mounting evidence that neural circuits can implement
probabilistic inferences over sensory, cognitive, or motor

variables. In some cases, humans can perform these inferences
optimally, as in multi-cue or multisensory integration (1–8). For
complex tasks, such as object recognition, action perception, and
object tracking, the computations required for optimal inference
are intractable, which implies that humans must use approximate
inferences (9–11). One approximate scheme that is particularly
appealing from a biological point of view is sampling. Consider
as an example the problem of object recognition. The goal of
the inference in this case would be to compute the probability over
object identities given the image. Although this probability dis-
tribution may be difficult to compute explicitly, one can often
design algorithms to generate samples from the distribution,
allowing one to perform approximate inference (12, 13). Some
human cognitive choice behaviors suggest that the nervous system
implements sampling. However, whether the same is true for low-
level perceptual processing is currently unknown.
Stimuli that lead to bistable percepts (14–18), like the Necker

cube, provide a tractable experimental preparation for testing the
sampling hypothesis. With such stimuli, perception alternates
stochastically between two possible interpretations, a behavior
consistent with sampling as suggested by several works (16, 19,
20). However, the key question is what probability distribution is
being sampled. If the brain uses sampling for Bayesian inference,
neural circuits should sample from an internal probability distri-
bution on possible stimulus interpretations that are conditioned
on the available sensory data, the so-called posterior distribution.
This distribution places important constraints on the distributions
of perceptual states for bistable stimuli.
To test this idea, we used stimuli composed of two drifting

gratings whose depth ordering is ambiguous (21). We then ma-
nipulated two depth cues to vary the fractions of dominance of the
percepts. Our central prediction is that the fractions of dominance
of each percept should behave as probabilities if they are the re-
sult of a sampling process of a posterior distribution over image
interpretations. We will refer to this form of sampling as Bayesian
sampling. First, we show that subjects’ fractions of dominance in
different cue conditions follow the same multiplicative rule as

probabilities in the Bayesian calculus, suggesting that bistable
perception is indeed a form of Bayesian sampling. Second, we
describe possible neural implementations of a Bayesian sampling
process using attractor networks, and we discuss the link with
probabilistic population codes (22).

Results
Multiplicative Rule for Combining Empirical Fractions of Dominance.
We asked subjects to report their spontaneous alternations in
perceived depth ordering of two superimposed moving gratings
over a 1-min period and measured the fraction of dominance time
for each percept (Methods and Fig. 1A). In the first experiment,
the two drifting gratings, α and β, were parameterized by their
wavelength and speed. One of the wavelengths was always set to
a fixed value λ*, and one of the speeds was set to a fixed value v*.
The remaining wavelength and speed parameters, λ and v, re-
spectively, determined the difference in wavelength and speed
between gratings α and β, denoted ∆λ and ∆v, and hence, the
information for choosing grating α as the one behind. We refer to
these differences as the cues to depth ordering, and we refer to
the condition where the two differences are zero as the neutral
cue condition (∆λ = 0 and ∆v = 0). These cues have been shown
to have a strong effect on the depth ordering of the gratings be-
cause of their relationship with the natural statistics of wavelength
and speed of distant objects (21). In the second experiment, we
manipulated wavelength and disparity, d, of the gratings. In this
case, the label v should be interchanged with the label d.
According to the Bayesian sampling hypothesis, the empirical

fractions of dominance arise from a process that samples the
posterior distribution on possible scene interpretations given the
sensory input. As we show in SI Methods, when two conditionally
independent cues are available (i.e., the values of the cues are
independent when conditioned on true depth), an optimal sys-
tem should sample from a probability distribution given by the
normalized product of the probability distributions derived by
varying each cue in isolation while keeping the other cue neutral.
Our hypothesis implies that the empirical fractions should be-
have as probabilities, and therefore, they should follow the
multiplicative rule (Eq. 1)

fλv ¼ fλ fv
fλ fv þ ð1− fλÞð1− fvÞ

; [1]

where fλv is the fraction of time that subjects report percept A
(grating α moving behind grating β) when the cues are set to ∆λ
and ∆v, fλ is the fraction of dominance of percept A when the
speed cue is neutral (∆v = 0) while the wavelength cue has value
∆λ, and fv is the dominance fraction when the wavelength cue is
neutral (∆λ = 0) while the speed cue has value ∆v. This relation
holds whether subjects are sampling from posterior distributions

Author contributions: R.M.-B., D.C.K., and A.P. designed research; R.M.-B., D.C.K., and A.P.
performed research; R.M.-B. analyzed data; and R.M.-B., D.C.K., and A.P. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. E-mail: rmoreno@bcs.rochester.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1101430108/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1101430108 PNAS Early Edition | 1 of 6

N
EU

RO
SC

IE
N
CE

PS
YC

HO
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

Diffusion in an Energy Model. Our finding that bistable perception
behaves like a Bayesian sampling process raises the issue as to
how neurons could implement such a process. We first show that
implementing the multiplicative rule is surprisingly straightfor-
ward with energy models. In Results, Sampling with Realistic
Neural Circuits, we will present a neural instantiation of this
conceptual framework. We model the dynamics of two neural
populations, A and B, whose states are described by their firing
rates rA and rB, respectively (Fig. 4A). The reduced dynamics
tracks the difference between the firing rates, r = rA − rB, where
r > 0 corresponds to percept A. This variable obeys (Eq. 2)

τ
d
dt
r ¼ − 4rðr2 − 1Þ þ gðIλ; IvÞ þ nðtÞ; [2]

where g(Iλ, Iv) is a bias provided by the inputs and n(t) is a filtered
white noise with variance σ2 (27) (SI Methods). The first term on
the right-hand side ensures that the activity difference, r, hovers
around the centers of the two energy wells (Fig. 4B). The bias term
measures the combined strength of the cues, which is a function of
the individual strengths Iλ and Iv favoring percept A from the
wavelength and speed cues, respectively. The function gðIλ; IvÞ is
chosen such that it is zero when the two cues are neutral (zero

currents) and positive when the two cues favor percept A (the two
currents are positive). The dynamics ofEq. 2 can be viewed as a noisy
descent over the energy landscape EðrÞ ¼ r2ðr2 − 2Þ− gðIλ; IvÞr,
which is symmetrical (Fig. 4B, black line) when the two cues are
neutral and negatively tilted (Fig. 4B, gray line) when the cues favor
perceptA. The resulting dynamics effectively draws samples from an
underlying probability distribution that depends on the input cur-
rents (a process known as Langevin Monte Carlo sampling) (28).
To model the experimental data that we have described, we

need a form of sampling that obeys the multiplicative rule.
Whether the network obeys the rule or not depends critically on
the function gðIλ; IvÞ. We consider here the family of functions
described by gðIλ; IvÞ ¼ Iλ þ Iv þ εðI2λ Iv þ I2v IλÞ, where εmeasures
the strength of the nonlinearity. Similar nonlinear functional
dependences on the input currents naturally arise in neuronal
networks with nonlinear activation functions (Results, Sampling
with Realistic Neural Circuits).
For a value of ε different from zero, the dynamical system does

not follow the multiplicative rule (Fig. 4D). In contrast, if we set
ε to zero, such that gðIλ; IvÞ ¼ Iλ þ Iv, the system now obeys the
multiplicative rule (Fig. 4E). This result can be derived analyti-
cally by computing the mean dominance duration of each per-
cept, which corresponds to the mean escape time from one of the
energy wells (SI Methods). We can then show that the fraction of
dominance of population A for ε equal to zero is a sigmoid
function of the sum of the inputs (Eq. 3)

fλv ¼ f ðs ¼ A j Iλ; IvÞ ¼
1

1þ e− 2ðIλþIvÞ=σ2eff
∝ e ðIλþIvÞ=σ2eff; [3]

where σ2eff is the effective noise in the system and is proportional
to σ2. Note that when only one cue is nonneutral, fi ∝ eIi=σ

2
eff (i= λ,

v), and when both cues are nonneutral, fλv ∝ eðIλþIvÞ=σ2eff . There-
fore, the fractions are related through fλv ∝ fλ × fv, and after
normalization, they follow the multiplicative rule (Eq. 1). Fig. 4F
shows that Eq. 3 is indeed satisfied by the diffusion model, be-
cause the fraction of dominance of percept A obtained from
numerical simulations as a function of the total input current
(Fig. 4F, blue line) is a sigmoid function (Fig. 4F, red line). This
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Fig. 2. Experimental and predicted fractions of dominance in the wave-
length and speed cue combination experiment. (A) Fraction of dominance of
percept A (i.e., grating α is behind grating β) as a function of the wavelength
difference between gratings α and β (Δλ = λα − λβ) for three different speed
differences (Δv = vα − vβ) in the congruent condition (both cues favored the
same depth ordering). Data are averaged across subjects, and the error bars
correspond to SEM across subjects. Experimental observations (red and black)
and predictions from the multiplicative rule (blue circles) (Eq. 1) are shown.
The predictions from the multiplicative rule were computed using the ex-
perimental data from the conditions in which only one cue was nonneutral
(open circles). The black open circles correspond to the fractions measured
when the two cues were neutral. The predictions are displaced slightly right
in relation to the experimental data (filled red circles) to allow better visual
comparison. (B) Same as in A but for the incongruent condition (the cues
favored opposite percepts). (C) Predicted fractions of dominance for the
multiplicative rule combining the data from the congruent (C; light blue) and
incongruent (IC; dark blue) conditions from A and B as a function of the
empirical fractions. (D) Same as in C but for the strongest cue take all rule
(brown) and a rate-based model with nonlinear (orange) and linear (blue)
input neurons.

C D

A B

Fig. 3. Experimental and predicted fractions of dominance in the wave-
length and disparity cue combination experiment. A–D are the same as in
Fig. 2 but with speed replaced by disparity.
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Diffusion in an Energy Model. Our finding that bistable perception
behaves like a Bayesian sampling process raises the issue as to
how neurons could implement such a process. We first show that
implementing the multiplicative rule is surprisingly straightfor-
ward with energy models. In Results, Sampling with Realistic
Neural Circuits, we will present a neural instantiation of this
conceptual framework. We model the dynamics of two neural
populations, A and B, whose states are described by their firing
rates rA and rB, respectively (Fig. 4A). The reduced dynamics
tracks the difference between the firing rates, r = rA − rB, where
r > 0 corresponds to percept A. This variable obeys (Eq. 2)

τ
d
dt
r ¼ − 4rðr2 − 1Þ þ gðIλ; IvÞ þ nðtÞ; [2]

where g(Iλ, Iv) is a bias provided by the inputs and n(t) is a filtered
white noise with variance σ2 (27) (SI Methods). The first term on
the right-hand side ensures that the activity difference, r, hovers
around the centers of the two energy wells (Fig. 4B). The bias term
measures the combined strength of the cues, which is a function of
the individual strengths Iλ and Iv favoring percept A from the
wavelength and speed cues, respectively. The function gðIλ; IvÞ is
chosen such that it is zero when the two cues are neutral (zero

currents) and positive when the two cues favor percept A (the two
currents are positive). The dynamics ofEq. 2 can be viewed as a noisy
descent over the energy landscape EðrÞ ¼ r2ðr2 − 2Þ− gðIλ; IvÞr,
which is symmetrical (Fig. 4B, black line) when the two cues are
neutral and negatively tilted (Fig. 4B, gray line) when the cues favor
perceptA. The resulting dynamics effectively draws samples from an
underlying probability distribution that depends on the input cur-
rents (a process known as Langevin Monte Carlo sampling) (28).
To model the experimental data that we have described, we

need a form of sampling that obeys the multiplicative rule.
Whether the network obeys the rule or not depends critically on
the function gðIλ; IvÞ. We consider here the family of functions
described by gðIλ; IvÞ ¼ Iλ þ Iv þ εðI2λ Iv þ I2v IλÞ, where εmeasures
the strength of the nonlinearity. Similar nonlinear functional
dependences on the input currents naturally arise in neuronal
networks with nonlinear activation functions (Results, Sampling
with Realistic Neural Circuits).
For a value of ε different from zero, the dynamical system does

not follow the multiplicative rule (Fig. 4D). In contrast, if we set
ε to zero, such that gðIλ; IvÞ ¼ Iλ þ Iv, the system now obeys the
multiplicative rule (Fig. 4E). This result can be derived analyti-
cally by computing the mean dominance duration of each per-
cept, which corresponds to the mean escape time from one of the
energy wells (SI Methods). We can then show that the fraction of
dominance of population A for ε equal to zero is a sigmoid
function of the sum of the inputs (Eq. 3)

fλv ¼ f ðs ¼ A j Iλ; IvÞ ¼
1

1þ e− 2ðIλþIvÞ=σ2eff
∝ e ðIλþIvÞ=σ2eff; [3]

where σ2eff is the effective noise in the system and is proportional
to σ2. Note that when only one cue is nonneutral, fi ∝ eIi=σ

2
eff (i= λ,

v), and when both cues are nonneutral, fλv ∝ eðIλþIvÞ=σ2eff . There-
fore, the fractions are related through fλv ∝ fλ × fv, and after
normalization, they follow the multiplicative rule (Eq. 1). Fig. 4F
shows that Eq. 3 is indeed satisfied by the diffusion model, be-
cause the fraction of dominance of percept A obtained from
numerical simulations as a function of the total input current
(Fig. 4F, blue line) is a sigmoid function (Fig. 4F, red line). This
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differences (Δv = vα − vβ) in the congruent condition (both cues favored the
same depth ordering). Data are averaged across subjects, and the error bars
correspond to SEM across subjects. Experimental observations (red and black)
and predictions from the multiplicative rule (blue circles) (Eq. 1) are shown.
The predictions from the multiplicative rule were computed using the ex-
perimental data from the conditions in which only one cue was nonneutral
(open circles). The black open circles correspond to the fractions measured
when the two cues were neutral. The predictions are displaced slightly right
in relation to the experimental data (filled red circles) to allow better visual
comparison. (B) Same as in A but for the incongruent condition (the cues
favored opposite percepts). (C) Predicted fractions of dominance for the
multiplicative rule combining the data from the congruent (C; light blue) and
incongruent (IC; dark blue) conditions from A and B as a function of the
empirical fractions. (D) Same as in C but for the strongest cue take all rule
(brown) and a rate-based model with nonlinear (orange) and linear (blue)
input neurons.
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Fig. 3. Experimental and predicted fractions of dominance in the wave-
length and disparity cue combination experiment. A–D are the same as in
Fig. 2 but with speed replaced by disparity.
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white noise with variance σ2 (27) (SI Methods). The first term on
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shows that Eq. 3 is indeed satisfied by the diffusion model, be-
cause the fraction of dominance of percept A obtained from
numerical simulations as a function of the total input current
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perimental data from the conditions in which only one cue was nonneutral
(open circles). The black open circles correspond to the fractions measured
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length and disparity cue combination experiment. A–D are the same as in
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Contextual modulation of posterior
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for gamma-like distributions, the convolution integral tends to increase the shape parameter, which
means that gamma parameter estimates produced by fitting transition durations will overestimate
the amount of ’memory’ in the process7. Finally note the limiting behavior as P (0) → 0, G01(t) =
P (T0 < t), so that direct measurement of the temporal distributions is possible but only for the
(almost) supressed perceptual state. Similar relationships exist for survival probabilities, defined as
Sij(t) = P (s(t) = j|s(0) = i)

4 Experiments

In this section we investigate simple qualitative predictions of the theory, that biasing perception
toward one of the interpretations will produce a coupled set of changes in both percept frequen-
cies and durations, under the assumption that perceptual biases result from differences in posterior
heights . To bias perception of a bistable stimuli, we had observers view a Necker cube flanked
with ’fields of cubes’ that are perceptually unambiguous and match one of the two percepts (see
figure ??). Subjects are typically biased toward seeing the Necker cube in the “looking down” state
(65-70% response rates), and the context stimuli shown in figure ??a) have little effect on Necker
cube reversals. We found that the looking up context, boosts “looking up” response rates from 30%
to 55%.

4.1 Methods

Subject’s perceptual state while viewing the stimuli in fig. ?? were collected using the methods
described in[?]. Eye movement effects[?] were controlled by having observers focus on a tiny
sphere in the center of the Necker cube, and attention was controlled using catch trials. Base rates
for reversals were established for each observer (18 total) in a training phase. Each observer viewed
100 randomly generated context stimuli and each stimulus was viewed long enough to acquire 10
responses (taking 10-12 sec on average). For ease of notation, we represent the “Looking down”
condition as state 0 and the “Looking Up” as state 1.

(a) An instance of the “Looking down” con-
text with the Necker cube in the middle

(b) An instance of the “Looking up” context
with the Necker cube in the middle

Figure 3: The two figures are examples of the “Looking down” and “Looking up” context conditions.

4.2 Results

We measured the effect of context on estimates of perceptual switching rates, Ri = P (s(t) = i),
first transition durations Gij , and survival probabilities Pii = P (s(t) = i|s(0) = i) by counting
the number of events of each type. Additionally, we fit a semi-Markov renewal process Qij(t) =
PijFij(t) to the data using a sampling based procedure. The procedure is too complex to fully
describe in this paper, so a brief description follows. For ease of sampling, Fij(t) were gamma with
separate parameters for each of the four conditionals {00, 01, 10, 11}, resulting in 10 parameters

7gamma shape parameters are frequently interpreted as the number of events in some abstract Poisson
process that must occur before transition

• Ambiguity can be resolved by contextual cues 

• Dwelling times can be  drastically modulated 

Schrater & Sundereswara, NIPS, 2007
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• Note: a much more delicate computation is happening here: 

conditioning on the context, assessment of probability of perspective



Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

RECAP: role of priors

 21

P (stimulus | feature)P (feature | stimulus) P (feature)⇥/

posterior: inference likelihood: evidence prior : expectations

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

RECAP: role of priors

 21

P (stimulus | feature)P (feature | stimulus) P (feature)⇥/

posterior: inference likelihood: evidence prior : expectations

curvature

light direction

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

RECAP: role of priors

 21

P (stimulus | feature)P (feature | stimulus) P (feature)⇥/

posterior: inference likelihood: evidence prior : expectations

curvature

light direction

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

RECAP: role of priors

 21

P (stimulus | feature)P (feature | stimulus) P (feature)⇥/

posterior: inference likelihood: evidence prior : expectations

curvature

light direction

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

RECAP: role of priors

 21

P (stimulus | feature)P (feature | stimulus) P (feature)⇥/

posterior: inference likelihood: evidence prior : expectations

curvature

light direction

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

RECAP: role of priors

 21

P (stimulus | feature)P (feature | stimulus) P (feature)⇥/

posterior: inference likelihood: evidence prior : expectations

curvature

light direction

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

RECAP: role of priors

 21

P (stimulus | feature)P (feature | stimulus) P (feature)⇥/

posterior: inference likelihood: evidence prior : expectations

curvature

light direction

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

prior

posterior

prior expectations

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferences

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferences

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferences

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferences

spontaneous activity evoked activity
P (a) P (a |x)

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferences

spontaneous activity evoked activity

P (a) =

Z
dxP (a |x)P (x)

P (a) P (a |x)

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferences

spontaneous activity evoked activity

expectations

P (a) =

Z
dxP (a |x)P (x)

P (a) P (a |x)

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferences

spontaneous activity evoked activity

expectations inference

P (a) =

Z
dxP (a |x)P (x)

P (a) P (a |x)

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferences

spontaneous activity evoked activity

expectations inference

stimulus 
statistics

P (a) =

Z
dxP (a |x)P (x)

P (a) P (a |x)

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferencesaverage

spontaneous activity evoked activity

expectations inference

stimulus 
statistics

P (a) =

Z
dxP (a |x)P (x)

P (a) P (a |x)

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferencesaverage

=
?

spontaneous activity evoked activity

expectations inference

stimulus 
statistics

P (a) =

Z
dxP (a |x)P (x)

average
P (a) P (a |x)

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferencesaverage

=
?

spontaneous activity evoked activity

expectations inference

stimulus 
statistics

P (a) =

Z
dxP (a |x)P (x)

hP (a |x)iP (x)

average
P (a) P (a |x)

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 22

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferencesaverage

=
?

spontaneous activity evoked activity

]KL[P (a) ||Dissimilarity:

expectations inference

stimulus 
statistics

P (a) =

Z
dxP (a |x)P (x)

hP (a |x)iP (x)

average
P (a) P (a |x)

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 23

a1

a2

a1

a2

prior

posterior posterior

prior

prior expectations inferencesaverage

]KL[P (a) ||Dissimilarity:

expectations inference

stimulus 
statistics

hP (a |x)iP (x)

=
?

spontaneous activity evoked activity

P (a) =

Z
dxP (a |x)P (x)

average
P (a) P (a |x)

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 23

=
?

spontaneous activity evoked activity

P (a) =

Z
dxP (a |x)P (x)

average
P (a) P (a |x)

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu

Full response statistics

 23

=
?

spontaneous activity evoked activity

P (a) =

Z
dxP (a |x)P (x)

average
P (a) P (a |x)

★ the model has been adapted to the 
appropriate model of the world 

★ the stimulus statistics tested is 
appropriate
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.

fr
eq

ue
nc

y

29 30 44 45 83 92 129 151
0

100

200

300

400

500

600

700

postnatal age (days)

di
ve

rg
en

ce
 (

K
L,

 b
its

/s
ec

)

M

S

electrode number

tim
e

{2 ms

activity patterns
1 6 11 16

CONDITION 1

C

A B

activity patterns

KL

10 5 10 4 10 3 10 2 10 1 100

pattern frequency (M)

10 5

10 4

10 3

10 2

10 1

100

pa
tte

rn
 fr

eq
ue

nc
y 

(S
)

P129

tim
e 

(s
ec

)

0

8

16

nu
m

be
r 

of
 s

pi
ke

s

10 5 10 4 10 3 10 2 10 1 100

pattern frequency (M)

10 5

10 4

10 3

10 2

10 1

100

pa
tte

rn
 fr

eq
ue

nc
y 

(S
)

P29S

channels

M

channels channels

tim
e 

(s
ec

)

S

channels

M
0

25

50
1 8 16 1 8 16

0

25

50
1 8 16 1 8 16

www.sciencemag.org SCIENCE VOL 331 7 JANUARY 2011 85

REPORTS

 o
n 

Ja
nu

ar
y 

6,
 2

01
1

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

mintázatok gyakorisága 
természetes képek nézésekor

m
in

tá
za

to
k 

gy
ak

or
is

ág
a 

sö
té

tb
en

felnõtt állat fiatal állat

http://people.brandeis.edu/~ogergo


Statisztikus tanulás az idegrendszerben http://golab.wigner.mta.hu  28

models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.

fr
eq

ue
nc

y

29 30 44 45 83 92 129 151
0

100

200

300

400

500

600

700

postnatal age (days)

di
ve

rg
en

ce
 (

K
L,

 b
its

/s
ec

)

M

S

electrode number

tim
e

{2 ms

activity patterns
1 6 11 16

CONDITION 1

C

A B

activity patterns

KL

10 5 10 4 10 3 10 2 10 1 100

pattern frequency (M)

10 5

10 4

10 3

10 2

10 1

100

pa
tte

rn
 fr

eq
ue

nc
y 

(S
)

P129

tim
e 

(s
ec

)

0

8

16

nu
m

be
r 

of
 s

pi
ke

s

10 5 10 4 10 3 10 2 10 1 100

pattern frequency (M)

10 5

10 4

10 3

10 2

10 1

100

pa
tte

rn
 fr

eq
ue

nc
y 

(S
)

P29S

channels

M

channels channels

tim
e 

(s
ec

)

S

channels

M
0

25

50
1 8 16 1 8 16

0

25

50
1 8 16 1 8 16

www.sciencemag.org SCIENCE VOL 331 7 JANUARY 2011 85

REPORTS

 o
n 

Ja
nu

ar
y 

6,
 2

01
1

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

kor

kü
lö

nb
öz

õs
ég

models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.

fr
eq

ue
nc

y

29 30 44 45 83 92 129 151
0

100

200

300

400

500

600

700

postnatal age (days)

di
ve

rg
en

ce
 (

K
L,

 b
its

/s
ec

)

M

S

electrode number

tim
e

{2 ms

activity patterns
1 6 11 16

CONDITION 1

C

A B

activity patterns

KL

10 5 10 4 10 3 10 2 10 1 100

pattern frequency (M)

10 5

10 4

10 3

10 2

10 1

100

pa
tte

rn
 fr

eq
ue

nc
y 

(S
)

P129

tim
e 

(s
ec

)

0

8

16

nu
m

be
r 

of
 s

pi
ke

s

10 5 10 4 10 3 10 2 10 1 100

pattern frequency (M)

10 5

10 4

10 3

10 2

10 1

100

pa
tte

rn
 fr

eq
ue

nc
y 

(S
)

P29S

channels

M

channels channels

tim
e 

(s
ec

)

S

channels

M
0

25

50
1 8 16 1 8 16

0

25

50
1 8 16 1 8 16

www.sciencemag.org SCIENCE VOL 331 7 JANUARY 2011 85

REPORTS

 o
n 

Ja
nu

ar
y 

6,
 2

01
1

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

mintázatok gyakorisága 
természetes képek nézésekor

m
in

tá
za

to
k 

gy
ak

or
is

ág
a 

sö
té

tb
en

felnõtt állat fiatal állat

(n= 16 animals in total, table S1). The divergence
between aEA and SA decreased with age (Fig. 2,
B and C, Spearman’s r = –0.70, P < 0.004), and
the two distributionswere not significantly different
in mature animals (fig. S1, P83 to P90:m = 5.74,
P = 0.11; P129 to P151: m = 2.03, P = 0.25).

What aspects of aEA and SA are responsible
for their improvingmatch with age? Redundancy
reduction, one prominent assumption regarding
neural coding (19), would predict that neurons

behave as sparse (20, 21) and uncorrelated in-
formation channels (22). To assess the importance
of correlations between the activities of different
neurons, we constructed surrogate distributions for
aEA and SA that preserved single-neuron firing
rates but otherwise assumed that neurons fired
independently (17). Thus, any divergence between
a real and a surrogate distribution must be due to
correlated neural activities of second (23) or higher
order. By computing this divergence, we found

that the activity of neurons in both aEA and SA
became increasingly correlated (Fig. 3A, Spearman’s
r = 0.73, P < 0.002 for both curves) and in-
creasingly nonsparse with age (fig. S2), which ar-
gues against redundancy reduction.Moreover, these
increasing correlations were important for thematch
between aEA and SA because the surrogate SA did
not converge to the true aEA (Fig. 3B, Spearman’s
r = 0.34, P = 0.22), excluding the possibility that
the decreasing divergence between aEA and SA

Fig. 3. Contribution of spatial and temporal cor-
relations to the match between aEA and SA. (A and
B) The role of spatial correlations was quantified by
the divergence between the measured distributions
of neural activity patterns, movie-aEA (M) and SA
(S), and the surrogate versions of the same distribu-
tions (M̃ and S̃), in which correlations between chan-
nels were removed, while the firing rates were kept
intact (17). (A) The divergence between the measured
and surrogate distributions increased significantly
over age for both movie-aEA (orange) and SA (gray).
(B) Enhanced match between movie-aEA and SA over
development (red, compare Fig. 2B) disappeared
when spatial correlations were removed from SA (pink).
(C and D) Divergence of transition probability distribu-
tions between measured neural activity patterns and
their surrogate versions, in which temporal correlations
were removed, while firing rates and spatial correla-
tions were kept intact (17). (C) Temporal correlations in
adult animals (P129 to P151) as a function of the time
interval, t. Within-condition divergences (top) show
that temporal correlations decreased with time lag in
both movie-aEA (orange) and SA (gray). Across-
condition comparison (bottom) of the divergence of
aEA from themeasured SA (red) and from the surrogate
SA (pink) shows that temporal correlations in the two
conditions were matched up to time intervals when
they decayed to zero. (D) Temporal correlations at the
shortest time interval (t = 2 ms) as a function of age.
The match of transition probabilities between movie-
aEA and SA improved (red). Removing temporal
correlations from SA eliminated this match (pink). In
all figures, *P < 0.05, **P < 0.01, ***P < 0.001, m test (17).
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the origin. For young animals (faintest colors), SA was significantly dissimilar
from all aEA distributions. In the course of development, SA moved closer to
all aEAs; but by P129 to P151, SA was significantly more similar to movie-aEA
than artificial stimuli–aEAs, as quantified in (A). (C) Divergences measured
directly between different aEA distributions (noise-aEA and movie-aEA: ma-
genta, gratings-aEA and movie-aEA: yellow, gratings-aEA and noise-aEA:
cyan) showed no decrease in the specificity of the responses to different
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Motion illusions as optimal percepts

!36

Weiss, Simoncelli & Adelson (2002)

• Illusion emerges as a result of optimal computations under 
uncertainty 

• The prior the experiment hints at reflects a simple regularity 
of the environment 

• The prior is very generic, no subjective aspects can be 
revealed
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• two objects are shown: x1, and x2 

• the subject is told that one of them is coming from a particular 
category c 

• ‘choose the object that you think comes from category c’ 

• a Bayesian learner assumes two hypotheses:  
h1: x1 comes from p(x | c), x2 comes from g(x) 
h2: the other way round
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2 Markov chain Monte Carlo

Models of physical phenomena used by scientists are often expressed in terms of complex prob-
ability distributions over different events. Generating samples from these distributions can be an
efficient way to determine their properties, indicating which events are assigned high probabilities
and providing a way to approximate various statistics of interest. Often, the distributions used in
these models are difficult to sample from, being defined over large state spaces or having unknown
normalization constants. Consequently, a great deal of research has been devoted to developing so-
phisticated Monte Carlo algorithms that can be used to generate samples from complex probability
distributions. One of the most successful methods of this kind is Markov chain Monte Carlo. An
MCMC algorithm constructs a Markov chain that has the target distribution, from which we want
to sample, as its stationary distribution. This Markov chain can be initialized with any state, being
guaranteed to converge to its stationary distribution after many iterations of stochastic transitions
between states. After convergence, the states visited by the Markov chain can be used similarly to
samples from the target distribution (see [5] for details).

The canonical MCMC algorithm is the Metropolis method [6], in which transitions between states
have two parts: a proposal distribution and an acceptance function. Based on the current state, a
candidate for the next state is sampled from the proposal distribution. The acceptance function gives
the probability of accepting this proposal. If the proposal is rejected, then the current state is taken
as the next state. A variety of acceptance functions guarantee that the stationary distribution of the
resulting Markov chain is the target distribution [7]. If we assume that the proposal distribution is
symmetric, with the probability of proposing a new state x§ from the current state x being the same
as the probability of proposing x from x§, we can use the Barker acceptance function [8], giving

A(x§;x) =
º(x§)

º(x§) + º(x)
(1)

for the acceptance probability, where º(x) is the probability of x under the target distribution.

3 An acceptance function from human behavior

While our approach can be applied to any subjective probability distribution, our experiments fo-
cused on sampling from the distributions over objects associated with different categories. Cate-
gories are central to cognition, reflecting our knowledge of the structure of the world, supporting
inferences, and serving as the basic units of thought. The way people group objects into cate-
gories has been studied extensively, producing a number of formal models of human categorization
[3, 4, 9, 10, 11], almost all of which can be interpreted as defining a category as a probability dis-
tribution over objects [4]. In this section, we consider how to lead people to choose between two
objects in a way that would correspond to a valid acceptance function for an MCMC algorithm with
the distribution over objects associated with a category as its target distribution.

3.1 A Bayesian analysis of a choice task

Consider the following task. You are shown two objects, x1 and x2, and told that one of those
objects comes from a particular category, c. You have to choose which object you think comes from
that category. How should you make this decision?

We can analyze this choice task from the perspective of a rational Bayesian learner. The choice
between the objects is a choice between two hypotheses: The first hypothesis, h1, is that x1 is
drawn from the category distribution p(x|c) and x2 is drawn from g(x), an alternative distribution
that governs the probability of other objects appearing on the screen. The second hypothesis, h2, is
that x1 is from the alternative distribution and x2 is from the category distribution. The posterior
probability of the first hypothesis given the data is determined via Bayes’ rule,

p(h1|x1, x2) =
p(x1, x2|h1)p(h1)

p(x1, x2|h1)p(h1) + p(x1, x2|h2)p(h2)

=
p(x1|c)g(x2)p(h1)

p(x1|c)g(x2)p(h1) + p(x2|c)g(x1)p(h2)
(2)

2

posterior probability for h1:
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2 Markov chain Monte Carlo

Models of physical phenomena used by scientists are often expressed in terms of complex prob-
ability distributions over different events. Generating samples from these distributions can be an
efficient way to determine their properties, indicating which events are assigned high probabilities
and providing a way to approximate various statistics of interest. Often, the distributions used in
these models are difficult to sample from, being defined over large state spaces or having unknown
normalization constants. Consequently, a great deal of research has been devoted to developing so-
phisticated Monte Carlo algorithms that can be used to generate samples from complex probability
distributions. One of the most successful methods of this kind is Markov chain Monte Carlo. An
MCMC algorithm constructs a Markov chain that has the target distribution, from which we want
to sample, as its stationary distribution. This Markov chain can be initialized with any state, being
guaranteed to converge to its stationary distribution after many iterations of stochastic transitions
between states. After convergence, the states visited by the Markov chain can be used similarly to
samples from the target distribution (see [5] for details).

The canonical MCMC algorithm is the Metropolis method [6], in which transitions between states
have two parts: a proposal distribution and an acceptance function. Based on the current state, a
candidate for the next state is sampled from the proposal distribution. The acceptance function gives
the probability of accepting this proposal. If the proposal is rejected, then the current state is taken
as the next state. A variety of acceptance functions guarantee that the stationary distribution of the
resulting Markov chain is the target distribution [7]. If we assume that the proposal distribution is
symmetric, with the probability of proposing a new state x§ from the current state x being the same
as the probability of proposing x from x§, we can use the Barker acceptance function [8], giving

A(x§;x) =
º(x§)

º(x§) + º(x)
(1)

for the acceptance probability, where º(x) is the probability of x under the target distribution.

3 An acceptance function from human behavior

While our approach can be applied to any subjective probability distribution, our experiments fo-
cused on sampling from the distributions over objects associated with different categories. Cate-
gories are central to cognition, reflecting our knowledge of the structure of the world, supporting
inferences, and serving as the basic units of thought. The way people group objects into cate-
gories has been studied extensively, producing a number of formal models of human categorization
[3, 4, 9, 10, 11], almost all of which can be interpreted as defining a category as a probability dis-
tribution over objects [4]. In this section, we consider how to lead people to choose between two
objects in a way that would correspond to a valid acceptance function for an MCMC algorithm with
the distribution over objects associated with a category as its target distribution.

3.1 A Bayesian analysis of a choice task

Consider the following task. You are shown two objects, x1 and x2, and told that one of those
objects comes from a particular category, c. You have to choose which object you think comes from
that category. How should you make this decision?

We can analyze this choice task from the perspective of a rational Bayesian learner. The choice
between the objects is a choice between two hypotheses: The first hypothesis, h1, is that x1 is
drawn from the category distribution p(x|c) and x2 is drawn from g(x), an alternative distribution
that governs the probability of other objects appearing on the screen. The second hypothesis, h2, is
that x1 is from the alternative distribution and x2 is from the category distribution. The posterior
probability of the first hypothesis given the data is determined via Bayes’ rule,

p(h1|x1, x2) =
p(x1, x2|h1)p(h1)

p(x1, x2|h1)p(h1) + p(x1, x2|h2)p(h2)

=
p(x1|c)g(x2)p(h1)

p(x1|c)g(x2)p(h1) + p(x2|c)g(x1)p(h2)
(2)

2

posterior probability for h1:

p(x1,x2|h1)= p(x1|c) g(x2) 
p(x1,x2|h2)= g(x1) p(x2|c)
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Models of physical phenomena used by scientists are often expressed in terms of complex prob-
ability distributions over different events. Generating samples from these distributions can be an
efficient way to determine their properties, indicating which events are assigned high probabilities
and providing a way to approximate various statistics of interest. Often, the distributions used in
these models are difficult to sample from, being defined over large state spaces or having unknown
normalization constants. Consequently, a great deal of research has been devoted to developing so-
phisticated Monte Carlo algorithms that can be used to generate samples from complex probability
distributions. One of the most successful methods of this kind is Markov chain Monte Carlo. An
MCMC algorithm constructs a Markov chain that has the target distribution, from which we want
to sample, as its stationary distribution. This Markov chain can be initialized with any state, being
guaranteed to converge to its stationary distribution after many iterations of stochastic transitions
between states. After convergence, the states visited by the Markov chain can be used similarly to
samples from the target distribution (see [5] for details).

The canonical MCMC algorithm is the Metropolis method [6], in which transitions between states
have two parts: a proposal distribution and an acceptance function. Based on the current state, a
candidate for the next state is sampled from the proposal distribution. The acceptance function gives
the probability of accepting this proposal. If the proposal is rejected, then the current state is taken
as the next state. A variety of acceptance functions guarantee that the stationary distribution of the
resulting Markov chain is the target distribution [7]. If we assume that the proposal distribution is
symmetric, with the probability of proposing a new state x§ from the current state x being the same
as the probability of proposing x from x§, we can use the Barker acceptance function [8], giving

A(x§;x) =
º(x§)

º(x§) + º(x)
(1)

for the acceptance probability, where º(x) is the probability of x under the target distribution.

3 An acceptance function from human behavior

While our approach can be applied to any subjective probability distribution, our experiments fo-
cused on sampling from the distributions over objects associated with different categories. Cate-
gories are central to cognition, reflecting our knowledge of the structure of the world, supporting
inferences, and serving as the basic units of thought. The way people group objects into cate-
gories has been studied extensively, producing a number of formal models of human categorization
[3, 4, 9, 10, 11], almost all of which can be interpreted as defining a category as a probability dis-
tribution over objects [4]. In this section, we consider how to lead people to choose between two
objects in a way that would correspond to a valid acceptance function for an MCMC algorithm with
the distribution over objects associated with a category as its target distribution.

3.1 A Bayesian analysis of a choice task

Consider the following task. You are shown two objects, x1 and x2, and told that one of those
objects comes from a particular category, c. You have to choose which object you think comes from
that category. How should you make this decision?

We can analyze this choice task from the perspective of a rational Bayesian learner. The choice
between the objects is a choice between two hypotheses: The first hypothesis, h1, is that x1 is
drawn from the category distribution p(x|c) and x2 is drawn from g(x), an alternative distribution
that governs the probability of other objects appearing on the screen. The second hypothesis, h2, is
that x1 is from the alternative distribution and x2 is from the category distribution. The posterior
probability of the first hypothesis given the data is determined via Bayes’ rule,

p(h1|x1, x2) =
p(x1, x2|h1)p(h1)

p(x1, x2|h1)p(h1) + p(x1, x2|h2)p(h2)

=
p(x1|c)g(x2)p(h1)

p(x1|c)g(x2)p(h1) + p(x2|c)g(x1)p(h2)
(2)

2

posterior probability for h1:

g(x) is an alternative 
hypothesis for the 
origin of x

p(x1,x2|h1)= p(x1|c) g(x2) 
p(x1,x2|h2)= g(x1) p(x2|c)
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ability distributions over different events. Generating samples from these distributions can be an
efficient way to determine their properties, indicating which events are assigned high probabilities
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these models are difficult to sample from, being defined over large state spaces or having unknown
normalization constants. Consequently, a great deal of research has been devoted to developing so-
phisticated Monte Carlo algorithms that can be used to generate samples from complex probability
distributions. One of the most successful methods of this kind is Markov chain Monte Carlo. An
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to sample, as its stationary distribution. This Markov chain can be initialized with any state, being
guaranteed to converge to its stationary distribution after many iterations of stochastic transitions
between states. After convergence, the states visited by the Markov chain can be used similarly to
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candidate for the next state is sampled from the proposal distribution. The acceptance function gives
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gories are central to cognition, reflecting our knowledge of the structure of the world, supporting
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[3, 4, 9, 10, 11], almost all of which can be interpreted as defining a category as a probability dis-
tribution over objects [4]. In this section, we consider how to lead people to choose between two
objects in a way that would correspond to a valid acceptance function for an MCMC algorithm with
the distribution over objects associated with a category as its target distribution.

3.1 A Bayesian analysis of a choice task

Consider the following task. You are shown two objects, x1 and x2, and told that one of those
objects comes from a particular category, c. You have to choose which object you think comes from
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between the objects is a choice between two hypotheses: The first hypothesis, h1, is that x1 is
drawn from the category distribution p(x|c) and x2 is drawn from g(x), an alternative distribution
that governs the probability of other objects appearing on the screen. The second hypothesis, h2, is
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4 Testing the MCMC algorithm with known categories

To test whether the procedure outlined in the previous section will produce samples that accurately
reflect people’s mental representations, we trained people on a variety of category distributions and
attempted to recover those distributions using MCMC. A simple one-dimensional categorization
task was used, with the height of schematic fish (see Figure 1) being the dimension along which
category distributions were defined. Subjects were trained on two categories of fish height – a
uniform distribution and a Gaussian distribution – being told that they were learning to judge whether
a fish came from the ocean (the uniform distribution) or a fish farm (the Gaussian distribution).
Four between-subject conditions tested different means and variances for the Gaussian distributions.
Once subjects were trained, we collected MCMC samples for the Gaussian distributions by asking
subjects to judge which of two fish came from the fish farm.

4.1 Method

Fifty subjects were recruited from the university community via a newspaper advertisement. Data
from one subject was discarded for not finishing the experiment, data from another was discarded
because the chains reached a boundary, and the data of eight others were discarded because their
chains did not cross (more detail below). There were ten observers in each between-subject con-
dition. Each subject was paid $4 for a 35 minute session. The experiment was presented on a
Apple iMac G5 controlled by a script running in Matlab using PsychToolbox extensions [23, 24].
Observers were seated approximately 44 cm away from the display.

Each subject was trained to discriminate between two categories of fish: ocean fish and fish farm
fish. Subjects were instructed, “Fish from the ocean have to fend for themselves and as a result they
have an equal probability of being any size. In contrast, fish from the fish farm are all fed the same
amount of food, so their sizes are similar and only determined by genetics.” These instructions were
meant to suggest that the ocean fish were drawn from a uniform distribution and the fish farm fish
were drawn from a Gaussian distribution. The mean and the standard deviation of the Gaussian were
varied in four between-subject conditions, resulting from crossing two levels of the mean, µ = 3.66
cm and µ = 4.72 cm, with two levels of the standard deviation, æ = 3.1 mm and æ = 1.3 mm.
The uniform distribution was the same across training distributions and was bounded at 2.63 cm and
5.76 cm.

The stimuli were a modified version of the fish used in [25]. The fish were constructed from three
ovals, two gray and one black, and a circle on a black background. Fish were all 9.1 cm long with
heights drawn from the Gaussian and uniform distributions in training. Examples of the smallest and
largest fish are shown in Figure 1. During the the MCMC trials, the range of possible fish heights
was expanded to be from 0.3 mm to 8.35 cm.

Subjects saw two types of trials. In a training trial, either the uniform or Gaussian distribution was
selected with equal probability, and a single sample was drawn from the selected distribution. The
sampled fish was shown to the subject, who chose which distribution produced the fish. Feedback
was then provided on the accuracy of this choice. In an MCMC trial, two fish were presented on
the screen. Subjects chose which of the two fish came from the Gaussian distribution. Neither fish
had been sampled from the Gaussian distribution. Instead, one fish was the state of a Markov chain
and the other fish was the proposal. The state and proposal were unlabeled and they were randomly
assigned to either the left or right side of the screen. Three MCMC chains were interleaved during
the MCMC trials. The start states of the chains were chosen to be 2.63 cm, 4.20 cm, and 5.76 cm.
Relative to the training distributions, the start states were overdispersed, facilitating assessment of

Figure 1: Examples of the largest and smallest fish stimuli presented to subjects during training. The
relative size of the fish stimuli are shown here; true display sizes are given in the text.

4

• training subjects on a novel ‘lab category’  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reflect people’s mental representations, we trained people on a variety of category distributions and
attempted to recover those distributions using MCMC. A simple one-dimensional categorization
task was used, with the height of schematic fish (see Figure 1) being the dimension along which
category distributions were defined. Subjects were trained on two categories of fish height – a
uniform distribution and a Gaussian distribution – being told that they were learning to judge whether
a fish came from the ocean (the uniform distribution) or a fish farm (the Gaussian distribution).
Four between-subject conditions tested different means and variances for the Gaussian distributions.
Once subjects were trained, we collected MCMC samples for the Gaussian distributions by asking
subjects to judge which of two fish came from the fish farm.

4.1 Method

Fifty subjects were recruited from the university community via a newspaper advertisement. Data
from one subject was discarded for not finishing the experiment, data from another was discarded
because the chains reached a boundary, and the data of eight others were discarded because their
chains did not cross (more detail below). There were ten observers in each between-subject con-
dition. Each subject was paid $4 for a 35 minute session. The experiment was presented on a
Apple iMac G5 controlled by a script running in Matlab using PsychToolbox extensions [23, 24].
Observers were seated approximately 44 cm away from the display.
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fish. Subjects were instructed, “Fish from the ocean have to fend for themselves and as a result they
have an equal probability of being any size. In contrast, fish from the fish farm are all fed the same
amount of food, so their sizes are similar and only determined by genetics.” These instructions were
meant to suggest that the ocean fish were drawn from a uniform distribution and the fish farm fish
were drawn from a Gaussian distribution. The mean and the standard deviation of the Gaussian were
varied in four between-subject conditions, resulting from crossing two levels of the mean, µ = 3.66
cm and µ = 4.72 cm, with two levels of the standard deviation, æ = 3.1 mm and æ = 1.3 mm.
The uniform distribution was the same across training distributions and was bounded at 2.63 cm and
5.76 cm.

The stimuli were a modified version of the fish used in [25]. The fish were constructed from three
ovals, two gray and one black, and a circle on a black background. Fish were all 9.1 cm long with
heights drawn from the Gaussian and uniform distributions in training. Examples of the smallest and
largest fish are shown in Figure 1. During the the MCMC trials, the range of possible fish heights
was expanded to be from 0.3 mm to 8.35 cm.

Subjects saw two types of trials. In a training trial, either the uniform or Gaussian distribution was
selected with equal probability, and a single sample was drawn from the selected distribution. The
sampled fish was shown to the subject, who chose which distribution produced the fish. Feedback
was then provided on the accuracy of this choice. In an MCMC trial, two fish were presented on
the screen. Subjects chose which of the two fish came from the Gaussian distribution. Neither fish
had been sampled from the Gaussian distribution. Instead, one fish was the state of a Markov chain
and the other fish was the proposal. The state and proposal were unlabeled and they were randomly
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Figure 2: The four rows are subjects from each of the between-subject conditions. The panels in the
first column show the behavior of the three Markov chains per subject. The black lines represent the
states of the Markov chains, the dashed line is the mean of the Gaussian training distribution, and the
dot-dashed lines are two standard deviations from the mean. The second column shows the densities
of the training distributions. These training densities can be compared to the MCMC samples, which
are described by their kernel density estimates and Gaussian fits in the last two columns.

convergence. The proposal was chosen from a symmetric discretized pseudo-Gaussian distribution
with a mean equal to the current state. The probability of proposing the current state was set to zero.

The experiment was broken up into blocks of training and MCMC trials, beginning with 120 training
trials, followed by alternating blocks of 60 MCMC trials and 60 training trials. Training and MCMC
trials were interleaved to keep subjects from forgetting the training distributions. A block of 60 test
trials, identical to the training trials but without feedback, ended the experiment.

4.2 Results

Subjects were excluded if their chains did not converge to the stationary distribution or if the state of
any chain reached the edge of the parameter range. We used a heuristic for determining convergence:
every chain had to cross another chain.1 Figure 2 shows the chains from four subjects, one from each
of the between-subject conditions. Most subjects took approximately 20 trials to produce the first
crossing in their chains, so these trials were discarded and the remaining 60 trials from each chain
were pooled and used in further analyses.

The distributions on the right hand side of Figure 2 show the training distribution, best fit Gaussian
to the MCMC samples, and kernel density estimate based on the MCMC samples. The distributions
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well with the actual means of the training distributions. The standard deviations of the samples
tended to be higher than the training distributions, which could be a consequence of either perceptual

1Many heuristics have been proposed for assessing convergence. The heuristic we used is simple to apply
in a one-dimensional state space. It is a necessary, but not sufficient, condition for convergence.
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varied in four between-subject conditions, resulting from crossing two levels of the mean, µ = 3.66
cm and µ = 4.72 cm, with two levels of the standard deviation, æ = 3.1 mm and æ = 1.3 mm.
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The stimuli were a modified version of the fish used in [25]. The fish were constructed from three
ovals, two gray and one black, and a circle on a black background. Fish were all 9.1 cm long with
heights drawn from the Gaussian and uniform distributions in training. Examples of the smallest and
largest fish are shown in Figure 1. During the the MCMC trials, the range of possible fish heights
was expanded to be from 0.3 mm to 8.35 cm.

Subjects saw two types of trials. In a training trial, either the uniform or Gaussian distribution was
selected with equal probability, and a single sample was drawn from the selected distribution. The
sampled fish was shown to the subject, who chose which distribution produced the fish. Feedback
was then provided on the accuracy of this choice. In an MCMC trial, two fish were presented on
the screen. Subjects chose which of the two fish came from the Gaussian distribution. Neither fish
had been sampled from the Gaussian distribution. Instead, one fish was the state of a Markov chain
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Relative to the training distributions, the start states were overdispersed, facilitating assessment of
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Figure 4: Task and results for an experiment exploring natural categories of animals using stick
figure stimuli. (A) Screen capture from the experiment, where people make a choice between the
current state of the Markov chain and a proposed state. (B) States of the Markov chain for the subject
when estimating the distribution for giraffes. The nine-dimensional space characterizing the stick
figures is projected onto the two dimensions that best discriminate the different animal distributions
using linear discriminant analysis. Each chain is a different color and the start states of the chains
are indicated by the filled circle. The dotted lines are samples that were discarded to ensure that the
Markov chains had converged, and the solid lines are the samples that were retained. (C) Samples
from distributions associated with all four animals for the subject, projected onto the same plane
used in B. Two samples from each distribution are displayed in the bubbles. The samples capture
the similarities and differences between the four categories of animals, and reveal the variation in
the members of those categories.(D) Mean of the samples for each animal condition.
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probabilistic machine learning methods [20] we estimate the
subjective distribution.

Ideal observer models formalize subjects’ responses in sim-
ple perceptual decision-making tasks as a two-step process
[21] (Figure 1A; see also the Supplemental Experimental Pro-
cedures available online). First, the subject performs Bayesian
inference to compute the probability of different hypotheses,

H, about how the perceived stimuli, S, may have arisen within
the context of the given task, based on prior knowledge about
these stimuli encoded in their subjective distribution, P. Then,
the subject gives a response based on the probabilities of
these hypotheses, where the decision-making process itself
may also be imperfect such that the subject does not always
produce the response which corresponds to the most

A C

D

B

Figure 1. Cognitive Tomography Applied to Estimating Priors for Faces

(A) Information flow in the ideal observer model. In the model, a subjective distribution,P, encodes prior knowledge about stimuli. In this study, a subjective
distribution for faces assigns a probability value (gray levels) to each face as a function of its location in feature space (here the two dimensions of the feature
space correspond to the first two principal components of the structure of faces [19] and are measured in units of SD). Representative faces corresponding
to the corners of the feature space are shown. The ideal observer infers hypotheses,H, about the stimuli it perceives,S, using prior knowledge encoded inP.
Based on the inferred hypotheses, it computes the final response R. Both perception and decision making are subject to noise and biases, U.
(B) Cognitive tomography inverts the ideal observermodel to computeP based onR and the presented stimuli,S*, which is corrupted by perceptual noise to
yield S. Note that information available to the ideal observer and cognitive tomography (circles with green fill) to compute their final output (blue arrows and
circles) is complementary.
(C) In the familiarity task, participants are presented with a pair of faces (top) and are required to pick the one that they judge more familiar. Each face cor-
responds to a particular location in feature space (colored dots in the bottom panels correspond to stimuli in the top panels). The ideal observer model
makes its choice by considering two hypotheses (bottom; hypothesis 1, face 1 is more familiar than face 2; hypothesis 2, vice versa) that each specify a
way in which the stimuli could have been generated. According to these hypotheses, the familiar face is a sample from the subjective distribution (corrupted
by perceptual noise; colored covariance ellipses), and the unfamiliar face is sampled randomly and uniformly from the feature space (also subject to percep-
tual noise). Given a subjective distribution and the covariance of perceptual noise, the ideal observer assigns a probability to each hypothesis and then
through a decision process (also including noise) determines the probability of each possible response.
(D) In the odd-one-out task, participants are presentedwith three faces and are required to pick the one that looks themost different from the other two (top).
Each hypothesis corresponds to two of the faces being noise-corrupted versions (bottom; pairs of dots enclosed by covariance ellipses) of the same un-
derlying face (centers of ellipses) and the third face (the odd one out) being a noisy version of a truly different face (isolated dots within covariance ellipses,
here shown as circles).
See also Figure S1 for further details and validation of the method.

Current Biology Vol 23 No 21
2

Please cite this article in press as: Houlsby et al., Cognitive Tomography Reveals Complex, Task-Independent Mental Representa-
tions, Current Biology (2013), http://dx.doi.org/10.1016/j.cub.2013.09.012
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to the corners of the feature space are shown. The ideal observer infers hypotheses,H, about the stimuli it perceives,S, using prior knowledge encoded inP.
Based on the inferred hypotheses, it computes the final response R. Both perception and decision making are subject to noise and biases, U.
(B) Cognitive tomography inverts the ideal observermodel to computeP based onR and the presented stimuli,S*, which is corrupted by perceptual noise to
yield S. Note that information available to the ideal observer and cognitive tomography (circles with green fill) to compute their final output (blue arrows and
circles) is complementary.
(C) In the familiarity task, participants are presented with a pair of faces (top) and are required to pick the one that they judge more familiar. Each face cor-
responds to a particular location in feature space (colored dots in the bottom panels correspond to stimuli in the top panels). The ideal observer model
makes its choice by considering two hypotheses (bottom; hypothesis 1, face 1 is more familiar than face 2; hypothesis 2, vice versa) that each specify a
way in which the stimuli could have been generated. According to these hypotheses, the familiar face is a sample from the subjective distribution (corrupted
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tual noise). Given a subjective distribution and the covariance of perceptual noise, the ideal observer assigns a probability to each hypothesis and then
through a decision process (also including noise) determines the probability of each possible response.
(D) In the odd-one-out task, participants are presentedwith three faces and are required to pick the one that looks themost different from the other two (top).
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derlying face (centers of ellipses) and the third face (the odd one out) being a noisy version of a truly different face (isolated dots within covariance ellipses,
here shown as circles).
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