Statisztikus tanulás az idegrendszerben

ORBÁN GERGŐ

golab.wigner.mta.hu

Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II: Sampling Measuring priors Neural representation of probabilities Structure learning Vision II Decision making and reinforcement learning Introduction

- Knowledge representation
- Probabilistic models

Bayesian behaviour

Approximate inference I (computer lab)

Vision I

Approximate inference II: Sampling

Measuring priors

Neural representation of probabilities

Structure learning

Vision II

Decision making and reinforcement learning

elméleti -

Introduction

Knowledge representation

Probabilistic models

elméleti

kognitív

Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II: Sampling Measuring priors Neural representation of probabilities Structure learning Vision II

Decision making and reinforcement learning

Introduction Knowledge representation Probabilistic models elméleti Bayesian behaviour Approximate inference I (computer lab) Vision I kognitív Approximate inference II: Sampling Measuring priors Neural representation of probabilities Structure learning neurális Vision II Decision making and reinforcement learning

 $P(a_1, a_2 | \text{image}, \mathbf{c})$

 $P(a_1, a_2 | \text{image}, \mathbf{c})$

 $\max\left(\mathbf{P}(a_1, a_2 \,|\, \mathrm{image}, \mathbf{c})\right)$

traditional theories e.g. Olshausen & Field, Nature 1996, Schwartz & Simoncelli, Nat Neurosci 2001

mean response \rightarrow maximum a posteriori inference

changes in inferences need to be reflected in the response statistics

27 02 2019, CBL |

Stimulus complexity shapes response correlations in primary visual cortex

27 02 2019, CBL |

Stimulus complexity shapes response correlations in primary visual cortex

27 02 2019, CBL

Stimulus complexity shapes response correlations in primary visual cortex

Bayes inferencia neuronhálózatokkal: PPC

VI orientáció-szelektív neuronok

a neuronok azonban zajosak: az átlag körül az átlaggal arányos variabilitás van jelen

VI orientáció-szelektív neuronok

a neuronok azonban zajosak: az átlag körül az átlaggal arányos variabilitás van jelen

cél: orientáció becslése

a neuronok azonban zajosak: az átlag körül az átlaggal arányos variabilitás van jelen

cél: orientáció becslése

megfigyelt változók: $r = \{r_1, r_2, \dots r_N\}$

orientation

a neuronok azonban zajosak: az átlag körül az átlaggal arányos variabilitás van jelen

cél: orientáció becslése

megfigyelt változók: $r = \{r_1, r_2, \dots r_N\}$

nem megfigyelt változó: s

orientation

a neuronok azonban zajosak: az átlag körül az átlaggal arányos variabilitás van jelen

cél: orientáció becslése

megfigyelt változók: $r = \{r_1, r_2, \dots r_N\}$

nem megfigyelt változó: s

Bayes: $P(s | \mathbf{r}) \propto P(\mathbf{r} | s) P(s)$

 Neurális zaj varianciája arányos az átlagos aktivitással: Poisson zaj

- Neurális zaj varianciája arányos az átlagos aktivitással: Poisson zaj
- Likelihood alakja:

$$P(\mathbf{r} \mid s) = \prod_{i} \frac{e^{-f_i(s)} f_i(s)^{r_i}}{r_i!}$$

- Neurális zaj varianciája arányos az átlagos aktivitással: Poisson zaj
- Likelihood alakja:

$$P(\mathbf{r} \mid s) = \prod_{i} \frac{e^{-f_i(s)} f_i(s)^{r_i}}{r_i!}$$

- Neurális zaj varianciája arányos az átlagos aktivitással: Poisson zaj
- Likelihood alakja:

- Neurális zaj varianciája arányos az átlagos aktivitással: Poisson zaj
- Likelihood alakja:

- Neurális zaj varianciája arányos az átlagos aktivitással: Poisson zaj
- Likelihood alakja:

$$P(\mathbf{r} \,|\, s) = \prod_{i} \frac{e^{-f_i(s)} f_i(s)^{r_i}}{r_i!}$$

$$P(\mathbf{r} \mid s) = \prod_{i} \frac{e^{-f_i(s)} f_i(s)^{r_i}}{r_i!}$$

$p(s|c_1,c_2) \propto p(c_1|s)p(c_2|s)p(s).$

$$P(\mathbf{r} \mid s) = \prod_{i} \frac{e^{-f_i(s)} f_i(s)^{r_i}}{r_i!}$$

$$p(s|c_1, c_2) \propto p(c_1|s)p(c_2|s)p(s).$$
$$\frac{1}{\sigma_3^2} = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}$$
$$\mu_3 = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} \mu_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \mu_2$$

legrendszerben

 \rightarrow

http://golab.wigner.mta.hu

PPC	sampling

	PPC	sampling
neurons correspond to	parameters	variables

	PPC	sampling
neurons correspond to	parameters	variables
required network dynamics	deterministic	stochastic

	PPC	sampling
neurons correspond to	parameters	variables
required network dynamics	deterministic	stochastic
representable distributions	specific parametric form	nonparametric — srbitrary

	PPC	sampling
neurons correspond to	parameters	variables
required network dynamics	deterministic	stochastic
representable distributions	specific parametric form	nonparametric — srbitrary
critical factor for encoding accuracy	number of neurons	time

	PPC	sampling
neurons correspond to	parameters	variables
required network dynamics	deterministic	stochastic
representable distributions	specific parametric form	nonparametric — srbitrary
critical factor for encoding accuracy	number of neurons	time
instantaneous representation of uncertainty	yes, the whole distribution is represented at any given time	no, a sequence of samples is required

	PPC	sampling
neurons correspond to	parameters	variables
required network dynamics	deterministic	stochastic
representable distributions	specific parametric form	nonparametric — srbitrary
critical factor for encoding accuracy	number of neurons	time
instantaneous representation of uncertainty	yes, the whole distribution is represented at any given time	no, a sequence of samples is required
neurons required for multivariate distributions	scales exponentially with the number of dimensions	scales linearly with the number of dimensions

	PPC	sampling
neurons correspond to	parameters	variables
required network dynamics	deterministic	stochastic
representable distributions	specific parametric form	nonparametric — srbitrary
critical factor for encoding accuracy	number of neurons	time
instantaneous representation of uncertainty	yes, the whole distribution is represented at any given time	no, a sequence of samples is required
neurons required for multivariate distributions	scales exponentially with the number of dimensions	scales linearly with the number of dimensions
implementation of learning	cumbersome	manageable

sampling in perception

sampling in perception

sampling in perception

Necker cube

27 02 2019, CBL |

Quantitative consequences of sampling

Moreno Bote et al (2011) PNAS

Quantitative consequences of sampling

Moreno Bote et al (2011) PNAS

- Different weighings of different modes of the posterior introduce systematic variations in sampling times
- Relative dominance of percepts can be predicted

- Binocularly projected moving grating images
- The proportion of one or the other perceived in the foreground is measured

Quantitative consequences of sampling

Moreno Bote et al (2011) PNAS

- Two cues can be manipulated:
 - wavelength of the grating
 - speed of the grating
- The cues are affecting independently the dominance of percepts — the weights of the modes
Moreno Bote et al (2011) PNAS

- Two cues can be manipulated:
 - wavelength of the grating
 - Speed of the grating
- The cues are affecting independently the dominance of percepts — the weights of the modes

Moreno Bote et al (2011) PNAS

- Two cues can be manipulated:
 - wavelength of the grating
 - Speed of the grating
- The cues are affecting independently the dominance of percepts the weights of the modes

zerben

Moreno Bote et al (2011) PNAS

- Two cues can be manipulated:
 - wavelength of the grating
 - Speed of the grating
- The cues are affecting independently the dominance of percepts the weights of the modes

Quantitative consequences of sampling Moreno Bote et al (2011) PNAS f_{v} $1-f_{v}$ $1-f_{1}$ Cue 2: speed Cue 1: wavelength $f_{\lambda\nu} = \frac{f_{\lambda}f_{\nu}}{f_{\lambda}f_{\nu} + (1-f_{\lambda})(1-f_{\nu})}$

Quantitative consequences of sampling Moreno Bote et al (2011) PNAS f_{v} $1-f_{v}$ $1-f_{1}$ Cue 2: speed Cue 1: wavelength $f_{\lambda\nu} = \frac{f_{\lambda}f_{\nu}}{f_{\lambda}f_{\nu} + (1-f_{\lambda})(1-f_{\nu})}$ AD (A) $f_{_{\lambda v}}^{_{\rm predicted}}$ (HDV 1-f^{predicted} Cue 1+ Cue 2

Statisztikus tanulás az idegrendszerben

http://golab.wigner.mta.hu

Quantitative consequences of sampling Moreno Bote et al (2011) PNAS f_{v} $1-f_{v}$ $1-f_{\lambda}$ Cue 2: speed Cue 1: wavelength $f_{\lambda\nu} = \frac{f_{\lambda}f_{\nu}}{f_{\lambda}f_{\nu} + (1-f_{\lambda})(1-f_{\nu})}$ TOD $f_{\lambda v} f_{\lambda v}^{\text{predicted}}$ $1-f_{\lambda v}^{\text{predicted}}$ 1-1 Cue 1+ Cue 2

Moreno Bote et al (2011) PNAS

Quantitative consequences of samplingMoreno Bote et al (2011) PNAS $f_{\lambda\nu} f_{\lambda\nu}^{\text{predicted}}$

Cue 1+ Cue 2

Quantitative consequences of samplingMoreno Bote et al (2011) PNAS $f_{\lambda}f_{\nu}$ $f_{\lambda}f_{\nu}$ $f_{\lambda}f_{\nu}$ $f_{\lambda}f_{\nu} + (1-f_{\lambda})(1-f_{\nu})$ $f_{\lambda}f_{\nu} + (1-f_{\lambda})(1-f_{\nu})$

Quantitative consequences of samplingMoreno Bote et al (2011) PNAS $f_{\lambda p}$ $f_{\lambda p}$

Quantitative consequences of samplingMoreno Bote et al (2011) PNAS $f_{\lambda\nu}$ $f_{\mu\nu}$ </t

Contextual modulation of posterior

- Ambiguity can be resolved by contextual cues
- Dwelling times can be drastically modulated

Schrater & Sundereswara, NIPS, 2007

Contextual modulation of posterior

- Ambiguity can be resolved by contextual cues
- Dwelling times can be drastically modulated

Schrater & Sundereswara, NIPS, 2007

Contextual modulation of posterior

- Ambiguity can be resolved by contextual cues
- Dwelling times can be drastically modulated

 Schrater & Sundereswara, NIPS, 2007
Note: a much more delicate computation is happening here: conditioning on the context, assessment of probability of perspective Statisztikus tanulás az idegrendszerben

RECAP: role of priors

prior expectations

prior expectations

inferences

prior expectations

inferences

prior expectations

inferences

 \mathbf{a}_1

prio

prior expectations

inferences

spontaneous activity $P(\mathbf{a})$

evoked activity $P(\mathbf{a} \,|\, \mathbf{x})$

prior expectations

inferences

spontaneous activity $P(\mathbf{a})$

evoked activity $P(\mathbf{a} \mid \mathbf{x})$

Statisztikus tanulás az idegrendszerben

 \mathbf{a}_2

prior expectations

inferences

prior expectations

inferences

evoked activity $P(\mathbf{a} | \mathbf{x})$

prior expectations

inferences

spontaneous activity $P(\mathbf{a})$

evoked activity $P(\mathbf{a} \mid \mathbf{x})$

average inferences prior expectations stimulus statistics expectations inference prior prior $dx P(\mathbf{a} \mid \mathbf{x}) P(\mathbf{x})$ $P(\mathbf{a}) =$ posterior \mathbf{a}_2 posterior \mathbf{a}_2 $\langle P(\mathbf{a} | \mathbf{x}) \rangle_{P(\mathbf{x})}$ \mathbf{a}_1 \mathbf{a}_1 ? spontaneous activity average evoked activity

Statisztikus tanulás az idegrendszerben

 $P(\mathbf{a})$

 $P(\mathbf{a} \mid \mathbf{x})$

prior expectations

average inferences

$$P(\mathbf{a}) = \int dx \, P(\mathbf{a} \,|\, \mathbf{x}) \, P(\mathbf{x})$$

spontaneous activity
$$\stackrel{?}{=}$$
 average evoked activity $P(\mathbf{a} \mid \mathbf{x})$
Full response statistics

★ the model has been adapted to the appropriate model of the world

★ the stimulus statistics tested is appropriate

$$P(\mathbf{a}) = \int dx \, P(\mathbf{a} \,|\, \mathbf{x}) \, P(\mathbf{x})$$

spontaneous activity
$$\stackrel{?}{=}$$
 average evoked activity $P(\mathbf{a} \mid \mathbf{x})$

Statisztikus tanulás az idegrendszerben

Allemath m

man have the second have the s

İ١

M

ш

00000011000001100000111010011100000110

00000011000001100000111010011100000110

10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁰ mintázatok gyakorisága természetes képek nézésekor

 Ha az idegrendszer ismeri a világ szerkezetét, akkor az elvárásai nem különböznek attól, amit általában érzékel

kor

különbözőség

természetes képek zaj periodikusan sávozott képek

Measuring priors

• Structurred

- Adapted to the environmental statistics
- Depends on subjective experience
- Task independence

Motion illusions as optimal percepts

Weiss, Simoncelli & Adelson (2002) Nat Neurosci http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

Motion illusions as optimal percepts

Weiss, Simoncelli & Adelson (2002) Nat Neurosci http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

Motion illusions as optimal percepts

Weiss, Simoncelli & Adelson (2002) Nat Neurosci http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

Weiss, Simoncelli & Adelson (2002) Nat Neurosci http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

Weiss, Simoncelli & Adelson (2002) Nat Neurosci http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

independent pieces of evidence (conditioned on the movement of the object)

b

С

а

Weiss, Simoncelli & Adelson (2002) Nat Neurosci http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

independent pieces of evidence (conditioned on the movement of the object)

b

С

а

Weiss, Simoncelli & Adelson (2002) Nat Neurosci http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

independent pieces of evidence (conditioned on the movement of the object)

h

С

а

Weiss, Simoncelli & Adelson (2002) Nat Neurosci http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

independent pieces of evidence (conditioned on the movement of the object)

h

С

а

Weiss, Simoncelli & Adelson (2002) Nat Neurosci http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

What kind of movements is the stimulus compatible with? (which movements have high probability given the evidence?)

a b c

independent pieces of evidence (conditioned on the movement of the object)

Weiss, Simoncelli & Adelson (2002) Nat Neurosci

(which movements have high probability given the evidence?)

Weiss, Simoncelli & Adelson (2002) Nat Neurosci

С

Weiss, Simoncelli & Adelson (2002)

- Illusion emerges as a result of optimal computations under uncertainty
- The prior the experiment hints at reflects a simple regularity of the environment
- The prior is very generic, no subjective aspects can be revealed

Sanborn & Griffiths (2008) NIPS

Sanborn & Griffiths (2008) NIPS

IDEA:

• The model of a particular domain of knowledge can be directly corresponded to a prior

Sanborn & Griffiths (2008) NIPS

- The model of a particular domain of knowledge can be directly corresponded to a prior
- The prior distribution contains the information we now about a specific domain and we are relying on this prior to make decisions

Sanborn & Griffiths (2008) NIPS

- The model of a particular domain of knowledge can be directly corresponded to a prior
- The prior distribution contains the information we now about a specific domain and we are relying on this prior to make decisions
- Samples can represent a probability distribution, which obviously includes the prior distribution as well

Sanborn & Griffiths (2008) NIPS

- The model of a particular domain of knowledge can be directly corresponded to a prior
- The prior distribution contains the information we now about a specific domain and we are relying on this prior to make decisions
- Samples can represent a probability distribution, which obviously includes the prior distribution as well
- Design an experiment where the decisions of humans produces samples from the prior distribution

Sanborn & Griffiths (2008) NIPS

- The model of a particular domain of knowledge can be directly corresponded to a prior
- The prior distribution contains the information we now about a specific domain and we are relying on this prior to make decisions
- Samples can represent a probability distribution, which obviously includes the prior distribution as well
- Design an experiment where the decisions of humans produces samples from the prior distribution
- The sequence of samples will reveal the prior distribution

Sanborn & Griffiths (2008) NIPS

 equivalence between choice behaviour and a Metropolis Hastings sampler can be established

Sanborn & Griffiths (2008) NIPS

 equivalence between choice behaviour and a Metropolis Hastings sampler can be established

Alternative phrasing of acceptance probability: Barker dynamics

$$a(x_{t+1}, x_t) = P^*(x_{t+1}) / (P^*(x_{t+1}) + P^*(x_t))$$

Statisztikus tanulás az idegrendszerben

Sanborn & Griffiths (2008) NIPS

 equivalence between choice behaviour and a Metropolis Hastings sampler can be established

Alternative phrasing of acceptance probability: Barker dynamics

$$a(x_{t+1}, x_t) = P^*(x_{t+1}) / (P^*(x_{t+1}) + P^*(x_t))$$

Statisztikus tanulás az idegrendszerben

Sanborn & Griffiths (2008) NIPS

 equivalence between choice behaviour and a Metropolis Hastings sampler can be established

Alternative phrasing of acceptance probability: Barker dynamics

$$a(x_{t+1}, x_t) = P^*(x_{t+1}) / (P^*(x_{t+1}) + P^*(x_t))$$

Statisztikus tanulás az idegrendszerben
Markov Chain Monte Carlo with people Sanborn & Griffiths (2008) NIPS equivalence between choice behaviour and a Metropolis Hastings sampler can be established proposal distribution $P^*(x)$ $Q(x_{t+1};x_t)$ Х Xt

Alternative phrasing of acceptance probability: Barker dynamics

$$a(x_{t+1}, x_t) = P^*(x_{t+1}) / (P^*(x_{t+1}) + P^*(x_t))$$

Statisztikus tanulás az idegrendszerben

http://golab.wigner.mta.hu

Markov Chain Monte Carlo with people Sanborn & Griffiths (2008) NIPS equivalence between choice behaviour and a Metropolis Hastings sampler can be established proposal distribution $P^*(x)$ $Q(x_{t+1};x_t)$ Х Xt

Alternative phrasing of acceptance probability: Barker dynamics

$$a(x_{t+1}, x_t) = P^*(x_{t+1}) / (P^*(x_{t+1}) + P^*(x_t))$$

Statisztikus tanulás az idegrendszerben

http://golab.wigner.mta.hu

Alternative phrasing of acceptance probability: Barker dynamics

$$a(x_{t+1}, x_t) = P^*(x_{t+1}) / (P^*(x_{t+1}) + P^*(x_t))$$

Statisztikus tanulás az idegrendszerben

http://golab.wigner.mta.hu

$$a(x_{t+1}, x_t) = P^*(x_{t+1}) / (P^*(x_{t+1}) + P^*(x_t))$$

$$a(x_{t+1}, x_t) = P^*(x_{t+1}) / (P^*(x_{t+1}) + P^*(x_t))$$

$$a(x_{t+1}, x_t) = P^*(x_{t+1}) / (P^*(x_{t+1}) + P^*(x_t))$$

$$a(x_{t+1}, x_t) = P^*(x_{t+1}) / (P^*(x_{t+1}) + P^*(x_t))$$

Sanborn & Griffiths (2008) NIPS

- two objects are shown: x1, and x2
- the subject is told that one of them is coming from a particular category c
- 'choose the object that you think comes from category c'
- a Bayesian learner assumes two hypotheses:
 h1: x1 comes from p(x | c), x2 comes from g(x)
 h2: the other way round

Sanborn & Griffiths (2008) NIPS

- two objects are shown: x1, and x2
- the subject is told that one of them is coming from a particular category c
- 'choose the object that you think comes from category c'
- a Bayesian learner assumes two hypotheses:
 h1: x1 comes from p(x | c), x2 comes from g(x)
 h2: the other way round

posterior probability for h1:

$$p(h_1|x_1, x_2)$$

 $\frac{p(x_1, x_2|h_1)p(h_1)}{p(x_1, x_2|h_1)p(h_1) + p(x_1, x_2|h_2)p(h_2)}$

Sanborn & Griffiths (2008) NIPS

- two objects are shown: x1, and x2
- the subject is told that one of them is coming from a particular category c
- 'choose the object that you think comes from category c'
- a Bayesian learner assumes two hypotheses: h1: x1 comes from p(x | c), x2 comes from g(x) h2: the other way round
 p(x₁,x₂|h₁)= p(x₁|c) g(x₂)
 p(x₁,x₂|h₁)= p(x₁|c) g(x₂)

posterior probability for h1:

$$p(h_1|x_1, x_2)$$

 $p(x_1, x_2|h_1)p(h_1)$ $\overline{p(x_1, x_2|h_1)p(h_1) + p(x_1, x_2|h_2)p(h_2)}$

Sanborn & Griffiths (2008) NIPS

- two objects are shown: x1, and x2
- the subject is told that one of them is coming from a particular category c
- 'choose the object that you think comes from category c'
- a Bayesian learner assumes two hypotheses: h1: x1 comes from p(x | c), x2 comes from g(x) h2: the other way round
 p(x₁,x₂|h₁)= p(x₁|c) g(x₂)
 p(x₁,x₂|h₁)= p(x₁|c) g(x₂)

posterior probability for h1:

$$p(h_1|x_1, x_2)$$

g(x) is an alternative hypothesis for the origin of x

Statisztikus tanulás az idegrendszerben

 $\frac{p(x_1, x_2|h_1)p(h_1)}{p(x_1, x_2|h_1)p(h_1) + p(x_1, x_2|h_2)p(h_2)}$

Sanborn & Griffiths (2008) NIPS

- two objects are shown: x1, and x2
- the subject is told that one of them is coming from a particular category c
- 'choose the object that you think comes from category c'
- a Bayesian learner assumes two hypotheses: h1: x1 comes from p(x | c), x2 comes from g(x) h2: the other way round
 p(x₁,x₂|h₁)= p(x₁|c) g(x₂)
 p(x₁,x₂|h₁)= p(x₁|c) g(x₂)

posterior probability for h1:

$$p(h_1|x_1, x_2)$$

g(x) is an alternative hypothesis for the origin of x

Statisztikus tanulás az idegrendszerben

http://golab.wigner.mta.hu

=

 $\frac{p(x_1, x_2|h_1)p(h_1)}{p(x_1, x_2|h_1)p(h_1) + p(x_1, x_2|h_2)p(h_2)}$ $= \frac{p(x_1|c)g(x_2)p(h_1)}{p(x_1|c)g(x_2)p(h_1)}$

 $p(x_1|c)g(x_2)p(h_1) + p(x_2|c)g(x_1)p(h_2)$

Statisztikus tanulás az idegrendszerben

Markov Chain Monte Carlo with people

Sanborn & Griffiths (2008) NIPS

http://golab.wigner.mta.hu

 training subjects on a novel 'lab category' (fish from the ocean)

• and later test their prior with MCMC

Sanborn & Griffiths (2008) NIPS

training subjects on a novel 'lab category' (fish from the ocean)

and later test their prior with MCMC

Sanborn & Griffiths (2008) NIPS

- exploring a learned category (animals)
- wire-frame animals are used which are easy to parametrise (tail length, neck length, neck angle, etc)

Sanborn & Griffiths (2008) NIPS

- exploring a learned category (animals)
- wire-frame animals are used which are easy to parametrise (tail length, neck length, neck angle, etc)

stimuli

Sanborn & Griffiths (2008) NIPS

- exploring a learned category (animals)
- wire-frame animals are used which are easy to parametrise (tail length, neck length, neck angle, etc)

stimuli

sequence of stimuli in the stimulus space

Sanborn & Griffiths (2008) NIPS

- exploring a learned category (animals)
- wire-frame animals are used which are easy to parametrise (tail length, neck length, neck angle, etc)

Sanborn & Griffiths (2008) NIPS

- exploring a learned category (animals)
- wire-frame animals are used which are easy to parametrise (tail length, neck length, neck angle, etc)

inferred priors for different categories (2D embedding of the high-D prior)

Sanborn & Griffiths (2008) NIPS

- exploring a learned category (animals)
- wire-frame animals are used which are easy to parametrise (tail length, neck length, neck angle, etc)

inferred priors for different categories (2D embedding of the high-D prior)

Sanborn & Griffiths (2008) NIPS

- The inferred prior can capture individual differences (subjective)
- The inferred prior is high-dimensional (fairly complex)
- The prior is task specific

- 1. *complex*
- 2. ecologically relevant
- 3. *extensive* subjective experience
- 4. experience is *subjective*

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

internal model - subjective distribution

Houlsby et al (2013) Curr Bill

internal model - subjective distribution

Houlsby et al (2013) Curr Bill

2

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

b FAMILIARITY

1 2

- Hypothesis 1
 - s 1 Hypothesis 2

Houlsby et al (2013) Curr Bill

b FAMILIARITY

Hypothesis 1

s 1 Hypothesis 2

 $\label{eq:FAMILIARITY} {\it FAMILIARITY}$ $r^*=1$

Houlsby et al (2013) Curr Bill

b FAMILIARITY

1 2

Hypothesis 1

Hypothesis 2

 $r^{*} = 2$

С ODD-ONE-OUT

Hypothesis 1

Hypothesis 2 Hypothesis 3

 $r^{*} = 1$

FAMILIARITY

Houlsby et al (2013) Curr Bill

b FAMILIARITY

2 1

Hypothesis 1

С ODD-ONE-OUT

Hypothesis 1

 $s_{\rm D}^*$

 s_1

Hypothesis 2 Hypothesis 3

FAMILIARITY $r^{*} = 2$ $r^{*} = 1$

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

familiarity task

Houlsby et al (2013) Curr Bill

familiarity task

1 2

subject #1

Houlsby et al (2013) Curr Bill

familiarity task

1 2

subject #1

Houlsby et al (2013) Curr Bill

familiarity task

1 2

subject #1

odd-one-out task

Statisztikus tanulás az idegrendszerben

Houlsby et al (2013) Curr Bill

familiarity task

1 2

subject #1

odd-one-out task

subject #1

Houlsby et al (2013) Curr Bill

familiarity task

1 2

subject #1

odd-one-out task

subject #1

subject #2

Houlsby et al (2013) Curr Bill

familiarity task

1 2

subject #1

odd-one-out task

subject #1

Statisztikus tanulás az idegrendszerben

subject #2 subject #2

Houlsby et al (2013) Curr Bill

familiarity task

1 2

subject #1

subject #1

subject #2

subject #2 http://golab.wigner.mta.hu

Houlsby et al (2013) Curr Bill

familiarity task

1 2

subject #1

subject #1

subject #2 http://golab.wigner.mta.hu

subject #2

Statisztikus tanulás az idegrendszerben

Houlsby et al (2013) Curr Bill

familiarity task

1 2

Houlsby et al (2013) Curr Bill

familiarity task

1 2

Houlsby et al (2013) Curr Bill

familiarity task

1 2

Houlsby et al (2013) Curr Bill

familiarity task

1 2

Houlsby et al (2013) Curr Bill

familiarity task

1 2

Houlsby et al (2013) Curr Bill

familiarity task

1 2

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

Houlsby et al (2013) Curr Bill

