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How does the brain work”?

 What does this question actually mean” What are
the answers that we would accept?

Do we have an answer to this question”
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Predictive models of brain

* we build models (theories) of observations and we
intend to predict phenomena in novel situations

 Computational neuroscience

e predicting biophysical quantities based on
physiological measurements

« Computational cognitive science

e predicting behavioral quantities based on
psychophysics experiments



What do we want to predict?

e |.e. what are the properties of the nervous
system that are relevant and which are
those that we deem irrelevant?

e \When would we be more satisfied:

e A model that describes neuronal
responses well but provides little insight
about its functioning”

e A model that reproduces the behavior
well but has little resemblance to the

actual brain?



L evels of abstraction

 Computation - determining the challenge:
through the goals of the biological agent phrasing a
mathematical model that is capable of addressing the

challenge

bottom-up
umop-doa

* Algorithm - solving the challenge can be achieved in many
different ways that can be weighed based on different factors

* Implementation - physical realization of the algorithm, in the
case of neuroscience, based on neurons, spikes, etc

David Marr, 1976
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e First, we want to reproduce the
high-level properties of the system

* next, we want to identify the
structural similarity

e |s called top-down modelling
® |n contrast, in bottom-up modelling

e attempts to best describe the
structural and dynamical
properties

e the function (behavior) is an
emergent property of the
system
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Normative approach

“A wing would be the most mystifying structure if one did not know that
birds flew. One might observe that it could be extended a considerable
distance, that it had smooth covering of feathers with conspicuous
markings, that it was operated by powerful muscles, and that strength and
lightness were prominent features of its constructions. These are
iImportant facts, but in themselves they do not tell us that birds fly. Yet,
without knowing this and without understanding something of the
principles of flight, a more detailed examination of the wing itself would
probably be unrewarding.”

Horace Barlow

properties

¢ the function (behavior) is an
emergent property of the
system
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Theoretical neuroscience

 We approach the brain from a science point of view. We want
theories that are

* |S normative
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Synthesizing theories

* The main goal of neuroscience to find theories that
explains main aspects of neural processes and behavior
using unufying principles

e Synthesizing theories from other disciplines
 [Laws of Newton in physics

* Principle of evolution in biology

« Computational complexity & Turing completeness in
computer science



The role of theories In neuroscience

Why a computational approach to the brain?

Principles of Neural Science, Kandel et al.

r<=0.96

Pages

“Year

1980 1N 2000 01 X 2030 Osd(
Timgw
T '
-
- w J8F
¥y
b

Daniel Wolpert

https://www.youtube.com/watch?v=wTYHF4LAKQI



The role of theories In neuroscience

Why a computational approach to the brain?

Principles of Neural Science, Kandel et al.

r<=0.96

Pages

Daniel Wolpert

https://www.youtube.com/watch?v=wTYHF4LAKQI



P
1
j N
ngip\e
r|emS s
o
nt.
S

\g\}\@@
.é,&"ée



Principles vs.
experiements




Principles vs.
experiements




Principles vs.
experiements




Principles vs.
experiements

It may be that brain..

—/




Principles vs.
experiements

It may be that brain..

—/




Principles vs.
experiements

It may be that brain..

.
...prepares the inputs %7
for classification Ay
% %
% ¥,
- N
2%
% 9
eP
! 7
x@éeq\j-"é
& &®

2
6‘6 —




Principles vs.
experiements

It may be that brain..

T
’a)
...prepares the inputs %"?’,‘\
for classification %. %,
(5"/,5 X
. . . (@)
Hierarchical models of object recognition - * y *FQ)
in cortex %, %,
2 2
R . o ©
Maximilian Riesenhuber & Tomaso Poggio B Q ()

Nature Neuroscience 2,1019-1025 (1999)  Download Citation %

1\ \ —




Principles vs.
experiements

It may be that brain..

T
’a)
...prepares the inputs %7
for classification Ay
Hierarchical models of object recognition - * y %Q)
in cortex % %
NP
P %

Maximilian Riesenhuber &Tomaso Poggio F

Nature Neuroscience 2,1019-1025 (1999) Do

< —




Principles vs.
experiements

It may be that brain..

T
...prepares the inputs %7
for classification %. 2,

Hierarchical models of object recognition
in cortex ‘

Maximilian Riesenhuber &Tomaso Poggio F

Nature Neuroscience 2,1019-1025 (1999) Do




Principles vs.
. ... implements probabilistic
expe”ements inference

It may be that brain..

T
’a)
...prepares the inputs %)"9\,\‘; _
for classification %. 2.
Hierarchical models of object recognition O%Q)
in cortex %, %,
NP
Q O\p

Maximilian Riesenhuber &Tomaso Poggio F

Nature Neuroscience 2,1019-1025 (1999) Do




Principles vs.
. ... implements probabilistic
expe”ements inference

Hierarchical Bayesian inference in the visual cortex

Tai Sing Lee and David Mumford
Journal of the Optical Society of America A v

Vol. 20, Issue 7, pp. 1434-1448 (2003)

It may be that brain..

’f(;_
’a)
...prepares the inputs %7
for classification %. %,

Hierarchical models of object recognition
in cortex

Maximilian Riesenhuber &Tomaso Poggio F

Nature Neuroscience 2,1019-1025 (1999) Do




Principles vs.
. ... implements probabilistic
expe”ements inference

Hierarchical Bayesian inference in the visual cortex

Tai Sing Lee and David Mumfordl

Journal of the Optical Society of America A v

Vol. 20, Issue 7, pp. 1434-1448 (2003)

It may be that brain..

’f(;_
’a)
...prepares the inputs %7
for classification %. %,

Hierarchical models of object recognition
in cortex

Maximilian Riesenhuber &Tomaso Poggio F

Nature Neuroscience 2,1019-1025 (1999) Do




Principles vs.
experiements

... implements probabilistic

inference

Hierarchical Bayesian inference in the visual cortex

Tai Sing Lee and

David Mumfordl

Journal of the Optical Society of America A v

Vol. 20, Issue 7, pp. 1434-1448 (2003)

It may be that brain..

...prepares the inputs
for classification

Hierarchical models of object recognition
in cortex

Maximilian Riesenhuber &Tomaso Poggio F

Nature Neuroscience 2,1019-1025 (1999) Do ; ‘ 0"
oo




. " imi he mutual information
Principles vs e e e
. th future stimul
p ... implements probabilistic W e

expe”ements inference

Hierarchical Bayesian inference in the visual cortex

Tai Sing Lee and David Mumfordl

Journal of the Optical Society of America A v

Vol. 20, Issue 7, pp. 1434-1448 (2003)

It may be that brain..

...prepares the inputs
for classification

Hierarchical models of object recognition
in cortex

Maximilian Riesenhuber &Tomaso Poggio F

Nature Neuroscience 2,1019-1025 (1999) Do




. " imi he mutual information
Principles vs e e e
. th future stimul
p ... implements probabilistic W e

ex p e r I e m e n tS inference E;:g;ci:;t‘zbility, Complexity, and

Hierarchical Bayesian inference in the visual cortex William Bialek | llya Nemenman and Naftali Tishby,

Tai Sing Lee and David Mumfordl

Journal of the Optical Society of America A v

Posted Online March 13, 2006
https://doi.org/10.1162/089976601753195969

© 2001 Massachusetts Institute of Technology

Neural Computation
Volume 13 | Issue 11| November 2001
p.2409-2463

Vol. 20, Issue 7, pp. 1434-1448 (2003)

It may be that brain..

...prepares the inputs
for classification

%, %
Hierarchical models of object recognition * 60%@)
in cortex . %, %

Nature Neuroscience 2,1019-1025 (1999) Doy e‘,



. " imi he mutual information
Principles vs e e e
. th future stimul
p ... implements probabilistic W e

ex p e r I e m e n tS inference E;:g;ci:;t‘zbility, Complexity, and

Hierarchical Bayesian inference in the visual cortex William Bialek | llya Nemenman and Naftali Tishby,

Tai Sing Lee and David Mumfordl

Journal of the Optical Society of America A v

Posted Online March 13, 2006
https://doi.org/10.1162/089976601753195969

© 2001 Massachusetts Institute of Technology

Neural Computation
Volume 13 | Issue 11| November 2001
p.2409-2463

Vol. 20, Issue 7, pp. 1434-1448 (2003)

It may be that brain..

...prepares the inputs \,é
for classification % D,
ECS
2. %
Hierarchical models of object recognition * y %Q)
in cortex \ %, %
© %

Maximilian Riesenhuber &Tomaso Poggio F

Nature Neuroscience 2,1019-1025 (1999) Do




. " imi he mutual information
Principles vs e e e
. th future stimul
p ... implements probabilistic W e

ex p e r I e m e n tS inference E;:g;ci:;t‘zbility, Complexity, and

Hierarchical Bayesian inference in the visual cortex William Bialek | llya Nemenman and Naftali Tishby,

Tai Sing Lee and David Mumfordl

Journal of the Optical Society of America A v

Posted Online March 13, 2006
https://doi.org/10.1162/089976601753195969

© 2001 Massachusetts Institute of Technology

Neural Computation
Volume 13 | Issue 11| November 2001
p.2409-2463

Vol. 20, Issue 7, pp. 1434-1448 (2003)

It may be that brain..

...prepares the inputs
for classification

Q- -
%
Hierarchical models of object recognition * y *FQ)
in cortex . %, (éé_
j A 2
Maximilian Riesenhuber &Tomaso Poggio V‘;? OJ‘
Nature Neuroscience 2,1019-1025 (1999) Doy - ‘;J:L" ec’
\
=
Al = ce-c-s e
Optical sensor in
=i
hippocampal
. lectrod
Head-fixed iggg;ﬁﬁl electrode

mouse



. " imi he mutual information
Principles vs e e e
. th future stimul
p ... implements probabilistic W e

ex p e r I e m e n tS inference E;:g;ci:;t‘zbility, Complexity, and

Hierarchical Bayesian inference in the visual cortex William Bialek | llya Nemenman and Naftali Tishby,

Tai Sing Lee and David Mumfordl

Journal of the Optical Society of America A v

Posted Online March 13, 2006
https://doi.org/10.1162/089976601753195969

© 2001 Massachusetts Institute of Technology

Neural Computation
Volume 13 | Issue 11| November 2001
p.2409-2463

Vol. 20, Issue 7, pp. 1434-1448 (2003)

It may be that brain..

...prepares the inputs
for classification

%, %

: : : . o}

Hierarchical models of object recognition * y *FQ)

: - Y %

In cortex \ %, %%
Q O\p

Maximilian Riesenhuber &Tomaso Poggio F

Nature Neuroscience 2,1019-1025 (1999) Doy

u
Al = oI

Optical sensor Feeding

tube

—

/7

Spherical

Head-fixed treadmill
mouse
= prefrontal
- - electrode
Optical sensor i
\ ::eedmg
ube
hippocampal
Spherical electrode

Head-fixed
mouse

treadmill



. " imi he mutual information
Principles vs e e e
. th future stimul
p ... implements probabilistic W e

ex p e r I e m e n tS inference E;:g;ci:;t‘zbility, Complexity, and

Hierarchical Bayesian inference in the visual cortex William Bialek | llya Nemenman and Naftali Tishby,

Tai Sing Lee and David Mumfordl

Journal of the Optical Society of America A v

Posted Online March 13, 2006
https://doi.org/10.1162/089976601753195969

© 2001 Massachusetts Institute of Technology

Neural Computation
Volume 13 | Issue 11| November 2001
p.2409-2463

Vol. 20, Issue 7, pp. 1434-1448 (2003)

It may be that brain..

...prepares the inputs
for classification

%, %

: : : . o}

Hierarchical models of object recognition * y *FQ)

: - Y %

In cortex \ %, %%
Q O\p

Maximilian Riesenhuber &Tomaso Poggio F

Nature Neuroscience 2,1019-1025 (1999) Doy

Feeding
tube

Spherical

Head-fixed treadmill
mouse
= prefrontal
- - electrode
Optical sensor i
\ ::eedmg
ube
hippocampal
Spherical electrode

Head-fixed
mouse

treadmill



L evels of abstraction

 Computation - determining the challenge:
through the goals of the biological agent phrasing a
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* Algorithm - solving the challenge can be achieved in many
different ways that can be weighed based on different factors

* Implementation - physical realization of the algorithm, in the
case of neuroscience, based on neurons, spikes, etc
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What is the goal of the visual system?

e To gain relevant information
(objects) from a huge data
set (wavelength of
incoming light)

e But what are the useful
objects and how do we
know how to recognize
them?



Ambiguity ot observations

* An inherent property of the the
environment is that multiple
Interpretations are compatible with
observations

e this is the rule, not the exceptio

e SENSsOors are noisy (e.g. cones) but
the main source of uncertainty is
limited data (insufficient
observations)

e As a conseqguence, perception is
essentially a challenge of inference:
based on observations we
reconstruct the state of the
environment

Ernst & Bulthoff, Trends Cogn Sci (2004)
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Perception as inference

e what are the directly observable quantities for the brain?
e activations of sensory neurons (cones and rodes, etc, ...)
e what are the relevant quantities?

e combination of complex features, such as if there is a lion in the
vicinity”?

e generative models describe the relationship between the unobserved
(latent) quantities and observed quantities

* |n this model we need to make inference on the latents based on
observations (based on pixel observations tell whether we see a lion)

e If we know the model we actually know how to produce observations
(e.g. how to draw a lion, dream a lion)
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making high-level inferences

e How many whees does a car have?

surely, we would say four

e this is learned information: once we g
around the car we see all of them

* however, this requires recognizing
object constancy

e sounds trivial. For you. Not for an infant.

e we could say that if the car had only three
wheels, it would be unstable

¢ this requires even more knowledge,
unfortunately (about weight
distributions, and about gravitation)
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What is learning”

* Building the generative model of the environment
based on observations

* We need to find the regularities characterizing the

observations, yielding a model that provides a
concise description of observations

* e.g. the identity of objects is not affected by a

number of properties, such as pose, viewing
angle, lighting, ...
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|
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A reprezentacio kérdéseil

Mik azok a kornyezetet leir6 mennyiségek, amelyekre az embereknek
(és allatoknak) szlUkséguk van a dontéseik meghozatalahoz?

e ezek nem feltétlentl ugyanazok, mint amiket ténylegesen
kivalasztanak, de remélhetOleg van kapcsolat

Mik azok a kbztes mennyiségek ezen mennyiségek €s a
megfigyelések k6zo6tt amelyek hasznosak a szamitas soran?

Ha erre a két kérdésre tudjuk a valaszt, az megadja a mentalis modell
strukturajat - altalaban egyszerre ennek csak egy kis részét vizsgaljuk

Milyen algoritmusok szamitjak ki ezeket a mennyisegeket?

Létezik feladatfliggetlen mentalis vilagmodell, vagy az agy kulonbdzo
feladatokhoz kilonb6z0 modelleket hasznal, amiket a kontextus
alapjan valtogat?

Hogyan tudunk torténeteket kitalalni - azaz hogyan hasznaljuk a
mentalis modellt arra, hogy akar a tudasunkkal ellentmondoé
hipotéziseket fogalmazzunk meg és vizsgaljuk (mi lenne, ha...)?



Mi a |0 reprezentacio”

* A kbdrnyezetet leird valtozok leképezese az agy mint formalis
rendszer altal megvaldsitott vilagmodell valtozoira

* A |O reprezentacio tomoriti a megtigyeléseket

* nem emlékezhetunk minden szituacio minden részletére
egész eletlinkben - egyszer megharapott egy fekete kutya,
egyszer meg egy barna

e tul nagy mennyiségl adat lenne
* nem tudnank altalanositani az ismereteinket U

megfigyelésekre - nem tudnam, mi lesz, ha j6n egy fehér
Kutya



A neuralis kod

e Hogyan kapcsolhatdo a mentalis
modell reprezentacioja biofizikai
menniységekhez?

e Mindenképpen szukséglnk van erre?

e Ha rendelkeznénk a mentalis modell és a
hozzatartozo algoritmusok teljes leirasaval, és
kizardlag viselkedéstakarunk prediktalni, akkor
nem

e a gyakorlatban ezzel nem rendelkezink, és segit
a korulhatarolasaban, ha bioldgiai szempontu
megszoritasokat vehetlnk figyelembe

e természetesen orvosi alkalmazasokhoz
szUkségesek a neuralis szintl leirasok



brain

CEU Dept. Cognitive Science

perception

action

Computational Cognitive Science

environment

40



perception

iInformation
inferred

from current

observation

/N

learned At
regularities of == P

. experiences
the environment P

environment

decision movement
making o control

action

CEU Dept. Cognitive Science Computational Cognitive Science 41



iInformation
inferred

from current

observation

perception

/N

learned

regularities of =

. e
the environment

CEU Dept. Cognitive Science

past
Xperiences

decision
making

—
action

movement
control

Computational Cognitive Science

environment

42



perception

iInformation
inferred

from current

observation

/' \

learned
regularities of
the environment

environment

past
experiences

decision movement
making o control

action

CEU Dept. Cognitive Science Computational Cognitive Science 43



perception

iInformation
inferred

from current

observation

/N

learned At
regularities of == P

. experiences
the environment P

environment

CEU Dept. Cognitive Science Computational Cognitive Science 44



Artificial and biological intelligence
Brain computer analogy

e \We can attempt to think of the brain as a digital computer



Artificial and biological intelligence
Brain computer analogy

e \We can attempt to think of the brain as a digital computer

e the hardware is the tissue, the software is its behavior



Artificial and biological intelligence
Brain computer analogy

e \We can attempt to think of the brain as a digital computer
e the hardware is the tissue, the software is its behavior

e These days software solve tasks similar to those of the human brain

¢ ALPHAGO IF . [ . S L

++000:00:48 ) U £ i @ LEE sEpoL

« 00:071:00

Wl ‘
AlphaGo Q- | (L 3
Google DeepMind - -




Artificial and biological intelligence
Brain computer analogy

e \We can attempt to think of the brain as a digital computer
e the hardware is the tissue, the software is its behavior
e These days software solve tasks similar to those of the human brain

e recognition of objects on images
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e \We can attempt to think of the brain as a digital computer
e the hardware is the tissue, the software is its behavior

e These days software solve tasks similar to those of the human brain
e recognition of objects on images

e |earning abstract categories
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Artificial and biological intelligence
Brain computer analogy

e \We can attempt to think of the brain as a digital computer
e the hardware is the tissue, the software is its behavior
e These days software solve tasks similar to those of the human brain
e recognition of objects on images
e |earning abstract categories
e |anguage understanding and synthesis

e Az analdgia nem tokéletes, de sokat segit abban, hogy
meghatarozzuk azt az absztrakcioés szintet, amin fel akarjuk tenni a
kerdéseinket
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Brain-machine analogy

results in logics

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVIT

WARREN S. McCuLrocH and WALTER H. PirTs

Because of the ‘‘all-or-none” character of nervous activity,
neural events and the relations among them can be treated by
means of propositional logic. It is found that the behavior of
every net can be described in these terms, with the addition of
more complicated logical means for nets containing circles; and
that for any logical expression satisfying certain conditions, one
can find a net behaving in the fashion it describes. It is shown
that many particular choices among possible neurophysiological
assumptions are equivalent, in the sense that for every net be-
having under one assumption, there exists another net which
behaves under the other and gives the same results, although
perhaps not in the same time. Various applications of the calculus

are discussed.
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Neuron
Cell’ress

Neuroscience-Inspired Artificial Intelligence

Demis Hassabis,!-2* Dharshan Kumaran,'-3 Christopher Summerfield,’-* and Matthew Botvinick'-2
1DeepMind, 5 New Street Square, London, UK

2Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK

3Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK

4Department of Experimental Psychology, University of Oxford, Oxford, UK

*Correspondence: dhcontact@google.com

http://dx.doi.org/10.1016/j.neuron.2017.06.011

The fields of neuroscience and artificial intelligence (Al) have a long and intertwined history. In more recent
times, however, communication and collaboration between the two fields has become less commonplace.
In this article, we argue that better understanding biological brains could play a vital role in building intelligent
machines. We survey historical interactions between the Al and neuroscience fields and emphasize current
advances in Al that have been inspired by the study of neural computation in humans and other animals. We
conclude by highlighting shared themes that may be key for advancing future research in both fields.

FOCUS | PERSPECTIVE

https://doi.org/10.1038/541593-019-0520-2

A deep learning framework for neuroscience

Blake A. Richards"?3#42* Timothy P. Lillicrap ©5%4?, Philippe Beaudoin’, Yoshua Bengio*#, RE \/ IE V v

Rafal Bogacz®, Amelia Christensen™, Claudia Clopath®", Rui Ponte Costa'?", Archy de Berker’,

If deep learning is the answer, what
is the question?

Andrew Saxe(@®, Stephanie Nelli® and Christopher Summerfield

Abstract | Neuroscience research is undergoing a minor revolution. Recent
advances in machine learning and artificial intelligence research have opened up
new ways of thinking about neural computation. Many researchers are excited by
the possibility that deep neural networks may offer theories of perception,
cognition and action for biological brains. This approach has the potential to
radically reshape our approach to understanding neural systems, because the
computations performed by deep networks are learned from experience, and not
endowed by the researcher. If so, how can neuroscientists use deep networks to
model and understand biological brains? What is the outlook for neuroscientists
who seek to characterize computations or neural codes, or who wish to understand
perception, attention, memory and executive functions? In this Perspective, our
goal is to offer a road map for systems neuroscience research in the age of deep
learning. We discuss the conceptual and methodological challenges of comparing
behaviour, learning dynamics and neural representations in artificial and biological
systems, and we highlight new research questions that have emerged for
neuroscience as a direct consequence of recent advances in machine learning.

NATURE REVIEWS | NEUROSCIENCE

doi:10.1038/nature14541

Surya Ganguli'*'®, Colleen J. Gillon©®'%", Danijar Hafner ®''8'°, Adam Kepecs?,

Nikolaus Kriegeskorte???, Peter Latham ©23, Grace W. Lindsay??, Kenneth D. Miller ©®222425,
Richard Naud ®2¢?7, Christopher C. Pack?, Panayiota Poirazi©?%, Pieter Roelfsema®?,
Jodo Sacramento®’, Andrew Saxe®', Benjamin Scellier'®, Anna C. Schapiro @32, Walter Senn®,

Greg Wapne’,Dartel Yamineu, Fiedertan Zerke, bl 2ylberpang\on%, Derts Thsier @ Probabilistic machine learning

and Konrad P. Kording ® 4404142

Conversely, artificial intelligence attempts to design computational systems based on the tasks they will have to solve. In artifi-

cial neural networks, the three components specified by design are the objective functions, the learning rules and the architec-

tures. With the growing success of deep learning, which utilizes brain-inspired architectures, these three designed components : 1
have increasingly become central to how we model, engineer and optimize complex artificial learning systems. Here we argue Zoubin Ghahramani
that a greater focus on these components would also benefit systems neuroscience. We give examples of how this optimization-

based framework can drive theoretical and experimental progress in neurosci We d that this principled perspective

on systems neuroscience will help to generate more rapid progress.

How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learn-
ing is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines
that learn from data acquired through experience. The probabilistic framework, which describes how to represent and
manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning,
robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and dis-
cusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization,
data compression and automatic model discovery.
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approximate inferencia
(sampling/ variational

on-line learning vs. approaches)
batch learnin

episodic replay

top-down interactions:
feed forward vs feedback

attention mechanisms
generative comprssion

one-shot learning
continual learning



Problems discussed

* Overview of the relevant functions and basic constituents of the of brain
« We attempt to characterize the computations that the brain needs to implement
e During the course we will mainly focus an challenges in perception
e ez nagyon jelentds része az agyi funkcioknak: minden, ami az érzékszervi
bemeneteket tudasra képezi le, beleértve a jelfeldolgozast, memaoriaformaciot,
tanulast, nyelvi feldolgozast, stb.

e we might touch upon decision making as well

e according to normative modelling, what we need now is a mathematical toolset to
define the knowledge we acquire from interacting with the environment

e once we have a proper mathematical framework we attempt to do two things
e we test if it predicts the bahavior of humans and other animals in various settings

e we build predictive models of biophysical quantities and check them on neuronal data
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Artificial intelligence and neuroscience

« Common roots in cybernetics
« Warren McCulloch, Walter Pitts, Norbert Wiener és Neumann Janos
« Building logic based on neuron-like units
* Analogous problems in the two disciplines
« Al: hogy how can we build the best tool?
* Neurosci: how do biological agents do it?
o Kdlcsdnds inspiraciot nyujtanak egymasnak, peldaul
e Neurosci -> Al: methods in machine learning building on neural networks

e Al -> Neurosci: aligning probabilistic models of perception with the
computations of neuronal networks
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Biophysical modelling
Spiking networks

e Balanced E/I
networks

Connectionist networks
e Deep learning
Systems neuroscience

Cognitive neurosience
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What are the quantities that we can measure?

* We would like to measure the membrane potential of neurons in the visual
cortex of an awake cat while watching visual stimuli: what are the challenges”

* \We cannot hit multiple neurons with an electrode: extracellular measurements
— electric/imaging

 \We only see action potentials, not membrane potentials

e |t we use electrodes, how can we establish which neuron a particular
signal belongs to?

 How to convince a cat to watch our carefully designed stimuli?
» Fixing the animal? Not very natural environment

 |f you fix it, there will be low incentive to cooperate — end up investigating
anaesthesized cats



Neural response variability

 Beyond the receptive field

* Response of neurons to the exact 0 50 100 150
same St|mU|US dISplayS Varlablllty Gur & Snodderly, Cereb Cortex 2006

* [he correlation of the responses

of pairs of neurons is variable ~ 1 .
Ss |
. . - SR | o
e Using probabilistic models, we el B
can link these forms of variability S0 8
o _ cell 1 (z-score)
to the probabillistic representation Kohn & Smith, | Neurosci 2005

of environmental features
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Layout of the course
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Hazl feladat

 Keress eqy érdekes illuzidt, és hatarozd meg, hogy
mik a lehetseges értelmezésel a szenzorikus
bemenetnek (kép, hang, szag, tapintas, stb.)

e Keress magyarazatot arra, hogy korabban tanult
szabalyossagok vagy az aktualis kornyezet
(kontextus) hogyan befolyasolja azt, hogy mit
erzeékelunk



