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• Normal(x, μ, Σ)

• Gauss function vs normal distribution

• ∫ f(x) dx

• p(a |b)
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How does the brain work?

• What does this question actually mean? What are 
the answers that we would accept? 

• Do we have an answer to this question?
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Theoretical neuroscience
• We approach the brain from a science point of view. 

We want theories that are 

• predictive 

• is normative 

• synthesizing  

• provides biological insights 

• We seek the mathematical models of brain functions



Predictive models of brain
• we build models (theories) of observations and we 

intend to predict phenomena in novel situations 

• Computational neuroscience 

• predicting biophysical quantities based on 
physiological measurements 

• Computational cognitive science 

• predicting behavioral quantities based on 
psychophysics experiments



What do we want to predict?
• I.e. what are the properties of the nervous 

system that are relevant and which are 
those that we deem irrelevant? 

• When would we be more satisfied: 
• A model that describes neuronal 

responses well but provides little insight 
about its functioning? 

• A model that reproduces the behavior 
well but has little resemblance to the 
actual brain?



Levels of abstraction

David Marr, 1976

• Computation - determining the challenge:  
through the goals of the biological agent phrasing a 
mathematical model that is capable of addressing the 
challenge 

• Algorithm - solving the challenge can be achieved in many 
different ways that can be weighed based on different factors 

• Implementation - physical realization of the algorithm, in the 
case of neuroscience, based on neurons, spikes, etc



Normative approach

• First, we want to reproduce the 
high-level properties of the system

• next, we want to identify the 
structural similarity

• is called top-down modelling

• In contrast, in bottom-up modelling

• attempts to best describe the 
structural and dynamical 
properties 

• the function (behavior) is an 
emergent property of the 
system
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Normative approach

• First, we want to reproduce the 
high-level properties of the system

• next, we want to identify the 
structural similarity

• is called top-down modelling

• In contrast, in bottom-up modelling

• attempts to best describe the 
structural and dynamical 
properties 

• the function (behavior) is an 
emergent property of the 
system

“A wing would be the most mystifying structure if one did not know that 
birds flew. One might observe that it could be extended a considerable 
distance, that it had smooth covering of feathers with conspicuous 
markings, that it was operated by powerful muscles, and that strength and 
lightness were prominent features of its constructions. These are 
important facts, but in themselves they do not tell us that birds fly. Yet, 
without knowing this and without understanding something of the 
principles of flight, a more detailed examination of the wing itself would 
probably be unrewarding.”

Horace Barlow
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Theoretical neuroscience
• We approach the brain from a science point of view. We want 

theories that are 

• predictive 

• is normative 

• synthesizing  

• provides biological insights 

• We seek the mathematical models of brain functions



Synthesizing theories
• The main goal of neuroscience to find theories that 

explains main aspects of neural processes and behavior 
using unufying principles 

• Synthesizing theories from other disciplines 

• Laws of Newton in physics 

• Principle of evolution in biology 

• Computational complexity & Turing completeness in 
computer science
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through the goals of the biological agent phrasing a 
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different ways that can be weighed based on different factors 

• Implementation - physical realization of the algorithm, in the 
case of neuroscience, based on neurons, spikes, etc
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• Muscle control

• for this, we need to make desicions

• this is simple if we are satisfied with reflexes

• otherwise, we need to remember things — we need to construct 
the representation of the knowledge we acquired in the neural 
tissue

• based on this knowledge we interpret our sensnory data — 
inference

• we need to constantly update the knowledge base based on 
novel information — learning
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What is the goal of the visual system?
• To gain relevant information 

(objects) from a huge data 
set (wavelength of 
incoming light)

• But what are the useful 
objects and how do we 
know how to recognize 
them?



Ambiguity of observations
• An inherent property of the the 

environment is that multiple 
interpretations are compatible with 
observations 

• this is the rule, not the exception 

• Sensors are noisy (e.g. cones) but 
the main source of uncertainty is 
limited data (insufficient 
observations) 

• As a consequence, perception is 
essentially a challenge of inference: 
based on observations we 
reconstruct the state of the 
environment

Ernst & Bülthoff, Trends Cogn Sci (2004)
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Perception as inference

• what are the directly observable quantities for the brain?

• activations of sensory neurons (cones and rodes, etc, …)

• what are the relevant quantities?

• combination of complex features, such as if there is a lion in the 
vicinity?

• generative models describe the relationship between the unobserved 
(latent) quantities and observed quantities

• In this model we need to make inference on the latents based on 
observations (based on pixel observations tell whether we see a lion)

• If we know the model we actually know how to produce observations 
(e.g. how to draw a lion, dream a lion)
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making high-level inferences
• How many whees does a car have?

• usually we only see three of them, but 
surely, we would say four

• this is learned information: once we go 
around the car we see all of them

• however, this requires recognizing 
object constancy

• sounds trivial. For you. Not for an infant.

• we could say that if the car had only three 
wheels, it would be unstable

• this requires even more knowledge, 
unfortunately (about weight 
distributions, and about gravitation)
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What is learning?
• Building the generative model of the environment 

based on observations

• We need to find the regularities characterizing the 
observations, yielding a model that provides a 
concise description of observations

• e.g. the identity of objects is not affected by a 
number of properties, such as pose, viewing 
angle, lighting, …
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integrációja

tanult szabályosságok elegendő információ

egyszerű következtetések

tanult szabályosságok hiányos információ

nehéz következtetések

tanult szabályosságok 
invokákása

szabályosságok és 
információ integrálása
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világról (well, we are modelling processes that model some other 
processes)

• in neuroscience we can use models for analyzing data, or we can 
speak of models that the brain builds — not to be confused

What is the goal of the brain?



A reprezentáció kérdései
• Mik azok a környezetet leíró mennyiségek, amelyekre az embereknek 

(és állatoknak) szükségük van a döntéseik meghozatalához?

• ezek nem feltétlenül ugyanazok, mint amiket ténylegesen 
kiválasztanak, de remélhetőleg van kapcsolat

• Mik azok a köztes mennyiségek ezen mennyiségek és a 
megfigyelések között amelyek hasznosak a számítás során?

• Ha erre a két kérdésre tudjuk a választ, az megadja a mentális modell 
struktúráját - általában egyszerre ennek csak egy kis részét vizsgáljuk

• Milyen algoritmusok számítják ki ezeket a mennyiségeket?

• Létezik feladatfüggetlen mentális világmodell, vagy az agy különböző 
feladatokhoz különböző modelleket használ, amiket a kontextus 
alapján váltogat?

• Hogyan tudunk történeteket kitalálni - azaz hogyan használjuk a 
mentális modellt arra, hogy akár a tudásunkkal ellentmondó 
hipotéziseket fogalmazzunk meg és vizsgáljuk (mi lenne, ha…)?



Mi a jó reprezentáció?

• A környezetet leíró változók leképezése az agy mint formális 
rendszer által megvalósított világmodell változóira 

• A jó reprezentáció tömöríti a megfigyeléseket 

• nem emlékezhetünk minden szituáció minden részletére 
egész életünkben - egyszer megharapott egy fekete kutya, 
egyszer meg egy barna 

• túl nagy mennyiségű adat lenne 

• nem tudnánk általánosítani az ismereteinket új 
megfigyelésekre - nem tudnám, mi lesz, ha jön egy fehér 
kutya



A neurális kód
• Hogyan kapcsolható a mentális  

modell reprezentációja biofizikai  
menniységekhez?

• Mindenképpen szükségünk van erre?

• Ha rendelkeznénk a mentális modell és a 
hozzátartozó algoritmusok teljes leírásával, és 
kizárólag viselkedéstakarunk prediktálni, akkor 
nem

• a gyakorlatban ezzel nem rendelkezünk, és segít 
a körülhatárolásában, ha biológiai szempontú 
megszorításokat vehetünk figyelembe

• természetesen orvosi alkalmazásokhoz 
szükségesek a neurális szintű leírások
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Artificial and biological intelligence
• We can attempt to think of the brain as a digital computer

• the hardware is the tissue, the software is its behavior
• These days software solve tasks similar to those of the human brain

• recognition of objects on images
• learning abstract categories
• language understanding and synthesis

• Az analógia nem tökéletes, de sokat segít abban, hogy 
meghatározzuk azt az absztrakciós szintet, amin fel akarjuk tenni a 
kérdéseinket

Brain computer analogy
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different ways that can be weighed based on different factors 

• Implementation - physical realization of the algorithm, in the 
case of neuroscience, based on neurons, spikes, etc

Computational inspiration
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The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent
times, however, communication and collaboration between the two fields has become less commonplace.
In this article, we argue that better understanding biological brains could play a vital role in building intelligent
machines. We survey historical interactions between the AI and neuroscience fields and emphasize current
advances in AI that have been inspired by the study of neural computation in humans and other animals. We
conclude by highlighting shared themes that may be key for advancing future research in both fields.

In recent years, rapid progress has been made in the related
fields of neuroscience and artificial intelligence (AI). At the
dawn of the computer age, work on AI was inextricably inter-
twined with neuroscience and psychology, andmany of the early
pioneers straddled both fields, with collaborations between
these disciplines proving highly productive (Churchland and
Sejnowski, 1988; Hebb, 1949; Hinton et al., 1986; Hopfield,
1982; McCulloch and Pitts, 1943; Turing, 1950). However,
more recently, the interaction has become much less common-
place, as both subjects have grown enormously in complexity
and disciplinary boundaries have solidified. In this review, we
argue for the critical and ongoing importance of neuroscience
in generating ideas that will accelerate and guide AI research
(see Hassabis commentary in Brooks et al., 2012).
We begin with the premise that building human-level general

AI (or ‘‘Turing-powerful’’ intelligent systems; Turing, 1936) is a
daunting task, because the search space of possible solutions
is vast and likely only very sparsely populated. We argue that
this therefore underscores the utility of scrutinizing the inner
workings of the human brain— the only existing proof that
such an intelligence is even possible. Studying animal cognition
and its neural implementation also has a vital role to play, as it
can provide a window into various important aspects of higher-
level general intelligence.
The benefits to developing AI of closely examining biological

intelligence are two-fold. First, neuroscience provides a rich
source of inspiration for new types of algorithms and architec-
tures, independent of and complementary to the mathematical
and logic-based methods and ideas that have largely dominated
traditional approaches to AI. For example, were a new facet of
biological computation found to be critical to supporting a cogni-
tive function, then we would consider it an excellent candidate
for incorporation into artificial systems. Second, neuroscience
can provide validation of AI techniques that already exist. If a
known algorithm is subsequently found to be implemented in
the brain, then that is strong support for its plausibility as an in-
tegral component of an overall general intelligence system.
Such clues can be critical to a long-term research program
when determining where to allocate resources most produc-

tively. For example, if an algorithm is not quite attaining the level
of performance required or expected, but we observe it is core to
the functioning of the brain, then we can surmise that redoubled
engineering efforts geared to making it work in artificial systems
are likely to pay off.
Of course from a practical standpoint of building an AI

system, we need not slavishly enforce adherence to biological
plausibility. From an engineering perspective, what works is
ultimately all that matters. For our purposes then, biological
plausibility is a guide, not a strict requirement. What we are
interested in is a systems neuroscience-level understanding
of the brain, namely the algorithms, architectures, functions,
and representations it utilizes. This roughly corresponds to
the top two levels of the three levels of analysis that Marr
famously stated are required to understand any complex bio-
logical system (Marr and Poggio, 1976): the goals of the sys-
tem (the computational level) and the process and computa-
tions that realize this goal (the algorithmic level). The precise
mechanisms by which this is physically realized in a biological
substrate are less relevant here (the implementation level).
Note this is where our approach to neuroscience-inspired AI
differs from other initiatives, such as the Blue Brain Project
(Markram, 2006) or the field of neuromorphic computing sys-
tems (Esser et al., 2016), which attempt to closely mimic or
directly reverse engineer the specifics of neural circuits (albeit
with different goals in mind). By focusing on the computational
and algorithmic levels, we gain transferrable insights into gen-
eral mechanisms of brain function, while leaving room to
accommodate the distinctive opportunities and challenges
that arise when building intelligent machines in silico.
The following sections unpack these points by considering the

past, present, and future of the AI-neuroscience interface.
Before beginning, we offer a clarification. Throughout this article,
we employ the terms ‘‘neuroscience’’ and ‘‘AI.’’ We use these
terms in the widest possible sense. When we say neuroscience,
we mean to include all fields that are involved with the study of
the brain, the behaviors that it generates, and the mechanisms
by which it does so, including cognitive neuroscience, systems
neuroscience and psychology. When we say AI, we mean work
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Recent years have seen a dramatic resurgence 
in optimism about the progress of artificial 
intelligence (AI) research, driven by advances 
in deep learning1. ‘Deep learning’ is the 
name given to a methodological toolkit 
for building multilayer (or ‘deep’) neural 
networks that solve challenging problems 
in supervised classification2, generative 
modelling3 or reinforcement learning4,5. 
Neuroscience and AI research have a rich 
shared history6, and deep networks are now 
increasingly being considered as promising 
theories of neural computation. The recent 
literature is studded with comparisons of 
the behaviour and activity of biological 
and artificial systems7–21, summarized in 
a growing number of review articles22–30.

In this Perspective, we assess the 
opportunities and challenges presented by 
this new wave of intellectual synergy between 
neuroscience and AI research. We begin by 
considering the recent proposals that have 
sought to reframe neural theory as a deep 
learning problem. We assess extant evidence 
that deep networks form representations 
or exhibit behaviours in ways that resemble 
biological agents and consider a host of new 

and computer scientists proposed neural 
networks as solutions to key problems 
in perception, memory and language31. 
Contemporary deep networks resemble 
scaled- up connectionist models, and 
recent advances in machine learning are 
also heavily indebted to the ubiquity of 
digital data and the relatively low cost 
of computation in the twenty- first century26. 
It might thus be tempting to dismiss current 
excitement around deep learning models for 
neuroscience as a rehashing of earlier ideas, 
owing more to the slow churn of scientific 
fashion than to genuine intellectual progress. 
However, many researchers believe that 
deep learning models have the potential to 
radically reshape neural theory, and to open 
new avenues for symbiotic research between 
neuroscience and AI research23,32–34. This 
is because contemporary deep networks 
are grounded in quasi- naturalistic sensory 
signals (such as image pixels13 or auditory 
spectrograms15) that allow them to perform 
tasks of far greater complexity than was 
previously possible. Contemporary deep 
networks can thus learn ‘end- to- end’ 
(that is, without researcher intervention) in 
a sensory ecology that resembles our own: 
natural sounds and scenes for supervised 
learning and generative modelling, and 
3D environments with realistic physics for 
deep reinforcement learning. This advent 
of end- to- end models of biological function 
has enabled researchers to attempt to model, 
for the first time, the de novo emergence 
of neural computations that can solve 
real- world problems.

Networks capable of high performance 
on complex real- world tasks have enabled 
a host of recent advances at the intersection 
of machine learning and neuroscience. 
For example, one major line of research has 
examined the representations formed by 
supervised deep networks that are trained 
to label objects in natural scenes2 (FIG. 1). 
A striking observation is that biologically 
plausible neural representations can emerge 
in networks that combine gradient descent 
with a handful of simple computational 
principles29 (gradient descent is a training 
method where weights are adjusted 
incrementally to encourage the network 
outputs towards an objective). When deep 
networks are endowed with properties 
including local connectivity, convolutions, 

questions, inspired by deep learning, that 
neuroscientists are only just beginning to 
address. In doing so, we highlight specific 
falsifiable hypotheses that often underpin 
deep learning models, drawing on the 
domains of perception, memory, inference 
and control processes. We point to the limits 
of correlating representations of brains and 
complex deep learning architectures, and 
argue for a focus on learning trajectories 
and complex behaviours. Finally, we ask 
how deep network theories can provide 
explanation and understanding, by drawing 
on recent research that is beginning to 
develop mathematical descriptions of 
network learning dynamics and behaviour. 
In doing so, we argue that deep networks 
can and should be used to provide a new 
generation of falsifiable theories of how 
humans and other animals think, learn 
and behave.

Neoconnectionism?
The idea that neural networks can serve as 
theories of neural computation is not new. 
During the parallel distributed processing 
movement of the 1980s, psychologists 
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Abstract | Neuroscience research is undergoing a minor revolution. Recent 
advances in machine learning and artificial intelligence research have opened up 
new ways of thinking about neural computation. Many researchers are excited by 
the possibility that deep neural networks may offer theories of perception, 
cognition and action for biological brains. This approach has the potential to 
radically reshape our approach to understanding neural systems, because the 
computations performed by deep networks are learned from experience, and not 
endowed by the researcher. If so, how can neuroscientists use deep networks to 
model and understand biological brains? What is the outlook for neuroscientists 
who seek to characterize computations or neural codes, or who wish to understand 
perception, attention, memory and executive functions? In this Perspective, our 
goal is to offer a road map for systems neuroscience research in the age of deep 
learning. We discuss the conceptual and methodological challenges of comparing 
behaviour, learning dynamics and neural representations in artificial and biological 
systems, and we highlight new research questions that have emerged for 
neuroscience as a direct consequence of recent advances in machine learning.
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Major technical advances are revolutionizing our ability 
to observe and manipulate brains at a large scale and to 
quantify complex behaviors1,2. How should we use this 

data to develop models of the brain? When the classical framework 
for systems neuroscience was developed, we could only record from 
small sets of neurons. In this framework, a researcher observes neu-
ral activity, develops a theory of what individual neurons compute, 
then assembles a circuit-level theory of how the neurons combine 
their operations. This approach has worked well for simple com-
putations. For example, we know how central pattern generators 
control rhythmic movements3, how the vestibulo-ocular reflex pro-
motes gaze stabilization4 and how the retina computes motion5. But 
can this classical framework scale up to recordings of thousands 
of neurons and all of the behaviors that we may wish to account 

for? Arguably, we have not had as much success with the classical 
approach in large neural circuits that perform a multitude of func-
tions, like the neocortex or hippocampus. In such circuits, research-
ers often find neurons with response properties that are difficult to 
summarize in a succinct manner6,7.

The limitations of the classical framework suggest that new 
approaches are needed to take advantage of experimental advances. 
A promising framework is emerging from the interactions between 
neuroscience and artificial intelligence (AI)8–10. The rise of deep 
learning as a leading machine-learning method invites us to revisit 
artificial neural networks (ANNs). At their core, ANNs model 
neural computation using simplified units that loosely mimic the 
integration and activation properties of real neurons11. Units are 
implemented with varying degrees of abstraction, ranging from 
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Systems neuroscience seeks explanations for how the brain implements a wide variety of perceptual, cognitive and motor tasks. 
Conversely, artificial intelligence attempts to design computational systems based on the tasks they will have to solve. In artifi-
cial neural networks, the three components specified by design are the objective functions, the learning rules and the architec-
tures. With the growing success of deep learning, which utilizes brain-inspired architectures, these three designed components 
have increasingly become central to how we model, engineer and optimize complex artificial learning systems. Here we argue 
that a greater focus on these components would also benefit systems neuroscience. We give examples of how this optimization-
based framework can drive theoretical and experimental progress in neuroscience. We contend that this principled perspective 
on systems neuroscience will help to generate more rapid progress.
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The key idea behind the probabilistic framework to machine learn-
ing is that learning can be thought of as inferring plausible models 
to explain observed data. A machine can use such models to make 

predictions about future data, and take decisions that are rational given 
these predictions. Uncertainty plays a fundamental part in all of this. 
Observed data can be consistent with many models, and therefore which 
model is appropriate, given the data, is uncertain. Similarly, predictions 
about future data and the future consequences of actions are uncertain. 
Probability theory provides a framework for modelling uncertainty.

This Review starts with an introduction to the probabilistic approach 
to machine learning and Bayesian inference, and then discusses some of 
the state-of-the-art advances in the field. Many aspects of learning and 
intelligence crucially depend on the careful probabilistic representation of 
uncertainty. Probabilistic approaches have only recently become a main-
stream approach to artificial intelligence1, robotics2 and machine learn-
ing3,4. Even now, there is controversy in these fields about how important 
it is to fully represent uncertainty. For example, advances using deep neural 
networks to solve challenging pattern-recognition problems such as speech 
recognition5, image classification6,7, and prediction of words in text8, do not 
overtly represent the uncertainty in the structure or parameters of those 
neural networks. However, my focus will not be on these types of pattern-
recognition problems, characterized by the availability of large amounts 
of data, but on problems for which uncertainty is really a key ingredient, 
for example where a decision may depend on the amount of uncertainty. 

I highlight five areas of current research at the frontier of probabilistic 
machine learning, emphasizing areas that are of broad relevance to sci-
entists across many fields: probabilistic programming, which is a general 
framework for expressing probabilistic models as computer programs 
and which could have a major impact on scientific modelling; Bayes-
ian optimization, which is an approach to globally optimizing unknown 
functions; probabilistic data compression; automating the discovery of 
plausible and interpretable models from data; and hierarchical modelling 
for learning many related models, for example for personalized medicine 
or recommendation. Although considerable challenges remain, the com-
ing decade promises substantial advances in artificial intelligence and 
machine learning based on the probabilistic framework.

Probabilistic modelling and representing uncertainty
At the most basic level, machine learning seeks to develop methods for 
computers to improve their performance at certain tasks on the basis of 

observed data. Typical examples of such tasks might include detecting 
pedestrians in images taken from an autonomous vehicle, classifying 
gene-expression patterns from leukaemia patients into subtypes by clin-
ical outcome, or translating English sentences into French. However, as 
I discuss, the scope of machine-learning tasks is even broader than these 
pattern classification or mapping tasks, and can include optimization 
and decision making, compressing data and automatically extracting 
interpretable models from data.

Data are the key ingredients of all machine-learning systems. But 
data, even so-called big data, are useless on their own until one extracts 
knowledge or inferences from them. Almost all machine-learning 
tasks can be formulated as making inferences about missing or latent 
data from the observed data — I will variously use the terms inference, 
prediction or forecasting to refer to this general task. Elaborating the 
example mentioned, consider classifying people with leukaemia into 
one of the four main subtypes of this disease on the basis of each person’s 
measured gene-expression patterns. Here, the observed data are pairs of 
gene-expression patterns and labelled subtypes, and the unobserved or 
missing data to be inferred are the subtypes for new patients. To make 
inferences about unobserved data from the observed data, the learning 
system needs to make some assumptions; taken together these assump-
tions constitute a model. A model can be very simple and rigid, such as a 
classic statistical linear regression model, or complex and flexible, such 
as a large and deep neural network, or even a model with infinitely many 
parameters. I return to this point in the next section. A model is con-
sidered to be well defined if it can make forecasts or predictions about 
unobserved data having been trained on observed data (otherwise, if 
the model cannot make predictions it cannot be falsified, in the sense 
of the philosopher Karl Popper’s proposal for evaluating hypotheses, or 
as the theoretical physicist Wolfgang Pauli said the model is “not even 
wrong”). For example, in the classification setting, a well-defined model 
should be able to provide predictions of class labels for new patients. 
Since any sensible model will be uncertain when predicting unobserved 
data, uncertainty plays a fundamental part in modelling.

There are many forms of uncertainty in modelling. At the lowest 
level, model uncertainty is introduced from measurement noise, for 
example, pixel noise or blur in images. At higher levels, a model may 
have many parameters, such as the coefficients of a linear regression, 
and there is uncertainty about which values of these parameters will 
be good at predicting new data. Finally, at the highest levels, there is 

How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learn-
ing is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines 
that learn from data acquired through experience. The probabilistic framework, which describes how to represent and 
manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, 
robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and dis-
cusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, 
data compression and automatic model discovery. 
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Problems discussed
• Overview of the relevant  functions and basic constituents of the of brain 

• We attempt to characterize the computations that the brain needs to implement 

• During the course we will mainly focus an challenges in perception 

• ez nagyon jelentős része az agyi funkcióknak: minden, ami az érzékszervi 
bemeneteket tudásra képezi le, beleértve a jelfeldolgozást, memóriaformációt, 
tanulást, nyelvi feldolgozást, stb. 

• we might touch upon decision making as well 

• according to normative modelling, what we need now is a mathematical toolset to 
define the knowledge we acquire from interacting with the environment 

• once we have a proper mathematical framework we attempt to do two things 

• we test if it predicts the bahavior of humans and other animals in various settings  

• we build predictive models of biophysical quantities and check them on neuronal data
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Artificial intelligence and neuroscience

• Common roots in cybernetics 

• Warren McCulloch, Walter Pitts, Norbert Wiener és Neumann János 

• Building logic based on neuron-like units

• Analogous problems in the two disciplines 

• AI: hogy how can we build the best tool? 

• Neurosci: how do biological agents do it?

• Kölcsönös inspirációt nyújtanak egymásnak, például 

• Neurosci -> AI: methods in machine learning building on neural networks 

• AI -> Neurosci: aligning probabilistic models of perception with the 
computations of neuronal networks
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Directions in computational neuroscience

• Biophysical modelling

• Spiking networks

• Balanced E/I  
networks

• Connectionist networks

• Deep learning

• Systems neuroscience

• Cognitive neurosience
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What are the relevant components of the brain?
• Neurons & synapses 

• membrane potentials & 
action potentials 

• Functionally specialized 
brain regions 
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What are the quantities that we can measure?

• We would like to measure the membrane potential of neurons in the visual 
cortex of an awake cat while watching visual stimuli: what are the challenges?

• We cannot hit multiple neurons with an electrode: extracellular measurements 
— electric/imaging

• We only see action potentials, not membrane potentials

• If we use electrodes, how can we establish which neuron a particular 
signal belongs to?

• How to convince a cat to watch our carefully designed stimuli?

• Fixing the animal? Not very natural environment

• If you fix it, there will be low incentive to cooperate — end up investigating 
anaesthesized cats



Neural response variability

• Beyond the receptive field 

• Response of neurons to the exact 
same stimulus displays variability 

• The correlation of the responses 
of pairs of neurons is variable 

• Using probabilistic models, we 
can link these forms of variability 
to the probabilistic representation 
of environmental features

MONKEY STRIATE CORTEX
showed little or no directional preference. Even when responses were highly
asymmetrical, the less effective direction of movement usually evoked
some minimal response (see Text-fig. 2), but there were a few examples in
which the maintained activity was actually suppressed.

Individual complex cells differed markedly in their relative responsive-
ness to slits, edges, or dark bars. The majority responded very much better
to one than to the other two, but some reacted briskly to two of them, and
a few to all three. For a cell that was sensitive to slits, but not to edges, the
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Text-fig. 2. Responses of a complex cell in right striate cortex (layer IV A) to
various ori6ntations of a moving black bar. Receptive field in the left eye indicated
by the interrupted rectangles; it was approximately i x I' in size, and was situated
40 below and to the left of the point offixation. Ocular-dominance group 4. Duration
of each record, 2 sec. Background intensity 1-3 log10 cd/M2, dark bars 0.0 log cd/M2.

responses increased as slit width was increased up to some optimal value,
and then they fell off sharply; the optimum width was always a small
fraction of the width of the whole field. For complex cells that responded
best to edges, some reacted to one configuration and also to its mirror
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moved the receptive field within the stimulus, resulting in
a fairly constant light flux within the receptive field.
The third cell (Fig. 1C) was recorded in a monkey that was

able to maintain fixation with very few saccades. In the example
shown, there were two blinks (arrows) and only two saccades
during the 5 s trial. Since responses of this cell were very
transient, and were not affected by either blinks or saccades, all
responses in the trial were selected. Note that in addition to the
low response variability (FF = 0.28) response latency was also
very consistent (56.9 ± 2.3 ms, mean ± SD).

Response Reliability in Different V1 Layers

To check whether the low variability we have found in alert
monkey V1 (Gur et al., 1997) is related to sampling cells from
the thalamic input layers (Kara et al., 2000; Movshon, 2000), we
compared the variability of cells located in different V1 layers.
Eighty-three cells were assigned to layers following a procedure
using three levels of confidence as described in the Materials
and Methods. Since the pattern of responses for each of the

three levels of confidence was very similar, all data were
combined to compute median values for each layer. The
counting windows were, with the exception of layer 4A, quite
similar. Median values (ms) were: layer 2/3, 60; layer 4A, 32.5;
layer 4B, 60; layer 4C, 75; layer 5, 67.5; layer 6, 92.5. Figure 2
shows the median and IQR of the FF for each layer. The median
FF was quite similar across layers, and values for the main input
layer 4C were not significantly different from FF values in other
V1 layers (Mann--Whitney test). In fact, with the exception of
layer 4A cells where the FF was significantly different (P < 0.01)
from the FF in layers 2/3, and 5, FF values in other layers were
not significantly different from each other. As can be surmised
from the interquartile range bars, not only the median FF, but
also the distribution of FF values was quite similar in all layers
except 4A, where four of five cells had very low variability.

Response Variability for Optimal and
Suboptimal Stimuli

There have been conflicting reports from experiments con-
ducted with anesthetized animals whether FF increases
(Carandini, 2004), decreases (Kara et al., 2000) or stays constant
(Tolhurst et al., 1983) as response amplitude increases. To
explore this issue we analyzed responses to optimal stimuli, to
suboptimal stimuli and to near-threshold stimuli. For 64 cells we
were able to record responses to optimal stimuli and to a range
of suboptimal ones. In 44 cells, responses were recorded as
a function of orientation; in 17 cells we changed contrast and in
three cells the width of the stimulating bar was varied. The
dependency of the FF on response strength was similar for the
different stimulus conditions so results were combined. Figure 3
shows experimental records from two 5 s fixation trials. The cell
was stimulated by an optimally oriented sweeping bar (Fig. 3A)
and by a bar 60!-away-from-optimum (Fig. 3B). The robust
responses evoked by the optimally oriented bar were quite
consistent (FF = 0.26) while the near-threshold responses
evoked by the non-optimal bar were highly variable (FF = 1.6).
The trials presented in Figure 3 depict a rare occasion where
eye position was not compensated for. Due to this monkey’s
exceptionally stable fixation we were able to select responses in
all segments. Those responses are shown in the raster plots
next to the trial displays. It is interesting to note that since the
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Figure 2. Distributions of Fano factors in individual V1 layers. The medians (gray bars)
and the interquartile ranges (error bars) are displayed. The number of cells sampled
from each layer is displayed to the right of each bar.
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Figure 3. Responses of an orientation selective cell (0791_002) to an optimally oriented and a non-optimally oriented stimulus. Eye movements were not compensated for during
the trial. Raster plots next to each trial record show spike occurrence times during individual sweeps of a stimulus bar. All selected segments are displayed. The lower raster plots
show responses without compensation for eye position while the upper plots show responses with timing computationally adjusted for eye position post hoc. (A) Responses to
repeated forward and back sweeps of an optimally oriented bar (120! from horizontal, tr. 13) across the receptive field of a complex cell located in layer 2/3. There were no
saccades during the trial and the responses were robust and consistent. Raster plots show responses to individual sweeps of the stimulus bar moving up and to the right. (B)
Responses of the same cell to sweeps of the same bar oriented 60! from horizontal (tr. 19). The rasters show responses to repeated sweeps down and to the right. Responses
were near threshold and were quite variable. Other conventions are as in Figure 1.
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moved the receptive field within the stimulus, resulting in
a fairly constant light flux within the receptive field.
The third cell (Fig. 1C) was recorded in a monkey that was

able to maintain fixation with very few saccades. In the example
shown, there were two blinks (arrows) and only two saccades
during the 5 s trial. Since responses of this cell were very
transient, and were not affected by either blinks or saccades, all
responses in the trial were selected. Note that in addition to the
low response variability (FF = 0.28) response latency was also
very consistent (56.9 ± 2.3 ms, mean ± SD).

Response Reliability in Different V1 Layers

To check whether the low variability we have found in alert
monkey V1 (Gur et al., 1997) is related to sampling cells from
the thalamic input layers (Kara et al., 2000; Movshon, 2000), we
compared the variability of cells located in different V1 layers.
Eighty-three cells were assigned to layers following a procedure
using three levels of confidence as described in the Materials
and Methods. Since the pattern of responses for each of the

three levels of confidence was very similar, all data were
combined to compute median values for each layer. The
counting windows were, with the exception of layer 4A, quite
similar. Median values (ms) were: layer 2/3, 60; layer 4A, 32.5;
layer 4B, 60; layer 4C, 75; layer 5, 67.5; layer 6, 92.5. Figure 2
shows the median and IQR of the FF for each layer. The median
FF was quite similar across layers, and values for the main input
layer 4C were not significantly different from FF values in other
V1 layers (Mann--Whitney test). In fact, with the exception of
layer 4A cells where the FF was significantly different (P < 0.01)
from the FF in layers 2/3, and 5, FF values in other layers were
not significantly different from each other. As can be surmised
from the interquartile range bars, not only the median FF, but
also the distribution of FF values was quite similar in all layers
except 4A, where four of five cells had very low variability.

Response Variability for Optimal and
Suboptimal Stimuli

There have been conflicting reports from experiments con-
ducted with anesthetized animals whether FF increases
(Carandini, 2004), decreases (Kara et al., 2000) or stays constant
(Tolhurst et al., 1983) as response amplitude increases. To
explore this issue we analyzed responses to optimal stimuli, to
suboptimal stimuli and to near-threshold stimuli. For 64 cells we
were able to record responses to optimal stimuli and to a range
of suboptimal ones. In 44 cells, responses were recorded as
a function of orientation; in 17 cells we changed contrast and in
three cells the width of the stimulating bar was varied. The
dependency of the FF on response strength was similar for the
different stimulus conditions so results were combined. Figure 3
shows experimental records from two 5 s fixation trials. The cell
was stimulated by an optimally oriented sweeping bar (Fig. 3A)
and by a bar 60!-away-from-optimum (Fig. 3B). The robust
responses evoked by the optimally oriented bar were quite
consistent (FF = 0.26) while the near-threshold responses
evoked by the non-optimal bar were highly variable (FF = 1.6).
The trials presented in Figure 3 depict a rare occasion where
eye position was not compensated for. Due to this monkey’s
exceptionally stable fixation we were able to select responses in
all segments. Those responses are shown in the raster plots
next to the trial displays. It is interesting to note that since the
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Figure 3. Responses of an orientation selective cell (0791_002) to an optimally oriented and a non-optimally oriented stimulus. Eye movements were not compensated for during
the trial. Raster plots next to each trial record show spike occurrence times during individual sweeps of a stimulus bar. All selected segments are displayed. The lower raster plots
show responses without compensation for eye position while the upper plots show responses with timing computationally adjusted for eye position post hoc. (A) Responses to
repeated forward and back sweeps of an optimally oriented bar (120! from horizontal, tr. 13) across the receptive field of a complex cell located in layer 2/3. There were no
saccades during the trial and the responses were robust and consistent. Raster plots show responses to individual sweeps of the stimulus bar moving up and to the right. (B)
Responses of the same cell to sweeps of the same bar oriented 60! from horizontal (tr. 19). The rasters show responses to repeated sweeps down and to the right. Responses
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window over the duration of the trial. The 
Fano factor has been used extensively to 
characterize neural variability (for example, 
see refs. 17–19). The Fano factor is influenced 
both by variability arising from spiking noise 
and by across-trial variability in the under-
lying firing rate20. Most prior work assumes 
that the underlying firing rate is similar 
across trials and uses the Fano factor to 
assess the statistics of spiking noise, which 
are roughly Poisson (Fano factor y1) for 
most of cortex. We began with the assump-
tion that spiking noise is roughly Poisson and 
we used the Fano factor to assess across-trial 
 variability in the underlying rate. We inter-
preted a Fano factor greater than 1 as being 
an indication of across-trial firing-rate vari-
ability. We interpreted changes in the Fano 
factor as reflecting changes in across-trial 
firing-rate variability9,20,21. Although this 
approach assumes Poisson spiking noise, 
it is reasonably robust to violations of that 
assumption (it is sufficient that spiking-noise 
variance scale linearly with the mean; the 
slope needn’t be unity). To begin, we exam-
ined how the Fano factor behaves across a 
variety of cortical areas.

We computed the mean firing rate and the 
Fano factor for ten datasets from seven cortical  
areas of the macaque monkey (Fig. 3): V1, V4, 
MT, the lateral intra-parietal area (LIP), the 
parietal reach region (PRR), dorsal premotor 
cortex (PMd) and orbitofrontal cortex (OFC). Responses were to 
 various visual stimuli or, for OFC, to juice reward. For each area, the 
Fano factor was averaged across neurons and conditions. This is similar 
to what was done for the membrane potential analysis and reflects both 
a desire for statistical power and the expectation that variability may 
change for both preferred and nonpreferred stimuli (as in Fig. 2a,b).

In every case, stimulus onset drove a decline in firing-rate vari-
ability as assessed by the Fano factor (all P < 0.02). This is notable, 
given the diversity of areas, stimuli and behavioral states. Variability 
declined during responses to simple visual stimuli, during operantly 

conditioned responses (PRR and PMd) and during reward-driven 
responses (OFC). The variability decline was present regardless of 
whether the monkey was anaesthetized (V1 and two of the four the 
MT datasets; Fig. 3, bottom), passively viewing (V4) or performing 
a task (the other six datasets). For two of the MT datasets (Fig. 3,  
bottom), stimulus onset occurred in two stages: pattern onset and 
motion onset. Both events drove a decline in variability, although only 
the more effective moving stimulus drove a sustained decline.

We previously proposed that declining variability in premotor  
cortex is related to the progress of motor preparation9. The changes 
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Figure 3 Changes in firing-rate variability for 
ten datasets (one per panel). Insets indicate 
stimulus type. Data are aligned on stimulus 
onset (arrow). For the two bottom panels  
(MT area/direction and MT speed), the dot 
pattern appeared at time zero (first arrow)  
and began moving at the second arrow. The 
mean rate (gray) and the Fano factor (black  
with flanking s.e.) were computed using a  
50-ms sliding window. For OFC, where response 
amplitudes were small, a 100-ms window was 
used to gain statistical power. Analysis included 
all conditions, including nonpreferred. The 
Fano factor was computed after mean matching 
(Fig. 4). The resulting stabilized means are 
shown in black. The mean number of trials  
per condition was 100 (V1), 24 (V4),  
15 (MT plaids), 88 (MT dots), 35 (LIP),  
10 (PRR), 31 (PMd), 106 (OFC), 125 (MT direction 
and area) and 14 (MT speed).

cell 1 (z-score)

algorithm (Chandler 1969) to minimize the
combined ! 2 error between the model predic-
tions and the data. From the fitted equation, we
defined the optimal stimulus parameter as that
which would evoke the strongest predicted re-
sponse. The difference between the preferred
spatial and temporal frequencies of the two cells
was then defined in octaves as follows:

! log2"Preferred frequency of cell 1

Preferred frequency of cell 2#! .

(11)

To measure the receptive field overlap of the
two cells, we determined the receptive field cen-
ter by hand, using a small (!0.3°) patch of op-
timal grating. We then measured responses to
gratings of increasing size and fit the data with a
difference-of-error function, using the STEPIT
algorithm. The receptive field size of each cell was defined as the maxi-
mum of the function in the range tested, and the overlap was defined as
the percentage of the smaller RF that was included in the larger RF. The
mean receptive field size provided by this approach is approximately
twice that provided by hand maps using small bars of light (Cavanaugh et
al., 2002). As a result, our estimate of RF overlap is substantially higher
than that which would result from mapping with small stimuli.

In our regression analysis, we only used data from pairs for which the
fits for both cells accounted for at least 50% of the variance (123 of 133
pairs for the spatial and temporal frequency data; 114 of 133 pairs for the
area data). The variance accounted for by the fits in these cells was on
average 90 –92% for each parameter.

Results
We recorded from 147 pairs of single units in 12 anesthetized,
paralyzed macaque monkeys. Because our primary objective was
to measure the stimulus dependence of neuronal correlation, we
recorded from nearby neurons (typically "500 "m apart) that
had similar receptive field properties, because distant or dissim-
ilar neurons tend to fire independently (Nelson et al., 1992; Lee et
al., 1998; DeAngelis et al., 1999; Nowak et al., 1999; Bair et al.,
2001) and have weak correlation in response variability (Zohary
et al., 1994, Lee et al., 1998; Bair et al., 2001; Averbeck and Lee,
2003). We recorded in all cortical layers but biased our popula-
tion toward complex neurons (76% of the population) (Skottun
et al., 1991). The receptive field properties of the neurons com-
prising each pair were similar, with a mean difference of 37° in
orientation preference, 0.37 octaves in spatial frequency prefer-
ence, 0.36 octaves in temporal frequency preference, and a mean
receptive field overlap of 75%. The ocular dominance of the two
cells was also similar, with a mean difference of 0.83 on the seven-
point scale of Hubel and Wiesel (1962).

Orientation dependence of spike count correlation
We evaluated the orientation dependence of rsc, the correlation of
evoked spike counts (Eq. 1 in Materials and Methods), by mea-
suring responses to 2.56 s presentations of full-contrast gratings
of five orientations. Figure 1A shows the orientation tuning and
range of orientations (thick line) used to measure correlation for
an example pair. We chose orientations that spanned a range
from driving the pair strongly [geometric mean response of 33
impulses per second (ips)] to evoking a relatively weak response
(8.6 ips). Scatter plots of the response of the two cells to multiple
presentations of each stimulus are shown in Figure 1B–E as
Z-scores relative to the mean response for each stimulus. The
value of rsc (text in scatter plots) varied among stimulus condi-

tions but did not depend in an obvious way on stimulus orienta-
tion or the evoked firing rate. For instance, the correlation for the
stimulus that drove both cells strongly (0.24) (Fig. 1D) was sim-
ilar to that for a stimulus that drove one cell but not the other
(0.30) (Fig. 1F).

The data presented in Figure 2 show frequency histograms for
rsc in our population of pairs (n # 100), arranged for each pair
from the orientation that was most effective at driving the two
cells to that which was least effective. We found little relationship
between the efficacy of the stimulus and the magnitude of spike
count correlation (ANOVA; p # 0.45). Stimuli that drove the
pair most strongly (42 $ 2 ips) had an average correlation of
0.18 $ 0.03 (Fig. 2A), similar to the average rsc value of 0.19 $
0.02 for stimuli that evoked the weakest response (12 $ 1 ips)
(Fig. 2E). The mean rsc collapsing across all conditions and pairs
was 0.20, a value consistent with previous measurements in the
visual system, including those in V1 [0.22 in Gawne et al. (1996)
and !0.25 in Reich et al. (2001)], middle temporal visual area
(MT) [0.19 in Zohary et al. (1994) and 0.20 in Bair et al. (2001)],
and inferior temporal cortex [0.23 in Gawne and Richmond
(1993)]. Because strong trends between stimulus efficacy and rsc

in individual pairs may go undetected in a population analysis,
we also calculated the relationship between the evoked firing rate
and rsc for each pair individually. We found a significant correla-
tion ( p " 0.05) in only 7 of 100 pairs, three of which were posi-
tively correlated and four of which were negatively correlated.

We conclude that there is little relationship between the effi-
cacy of an oriented stimulus and the correlation in trial-to-trial
variability of evoked spike count, suggesting that this variability
arises from orientation-independent variations in trial-to-trial
cortical excitability.

Orientation dependence of spike timing correlation
Whereas the orientation independence of rsc agrees well with
previous studies (Zohary et al., 1994; Bair et al., 2001), a related
form of correlation, spike timing synchrony, has been shown to
depend on stimulus drive. However, most studies investigating
synchrony between single V1 cortical neurons have focused ei-
ther on the effect of altering the “gestalt” characteristics of the
stimulus (Livingstone, 1996) or have used indirect measurements
such as the synchrony of multiunit activity (MUA) (Lamme and
Spekreijse, 1998) or the strength of oscillations in single-unit
activity, MUA, or the local field potential (LFP) (Gray et al., 1989;
Gray and Viana Di Prisco, 1997; Friedman-Hill et al., 2000; Frien
et al., 2000). The relationship between the synchronous firing of
single neurons and these measurements is unclear. For MUA

Figure 1. Example of the independence of spike count correlation and orientation. A, Tuning curves for two V1 neurons. Range
of orientations used to measure correlation are indicated by thick lines; letters indicate the stimulus used for each scatter plot.
B–F, Scatter plots of responses of V1 pair to 100 presentations of each stimulus. The response of each cell is normalized by
subtracting the mean response to that stimulus and dividing by the SD of the responses. The rsc values are indicated. deg, Degrees.
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Házi feladat

• Keress egy érdekes illúziót, és határozd meg, hogy 
mik a lehetséges értelmezései a szenzorikus 
bemenetnek (kép, hang, szag, tapintás, stb.) 

• Keress magyarázatot arra, hogy korábban tanult 
szabályosságok vagy az aktuális környezet 
(kontextus) hogyan befolyásolja azt, hogy mit 
érzékelünk


