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Computational Cognitive Science

Course layout
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Introduction of the mathematical framework
Probabilistic models
Probabilistic models in cognition: Bayesian behaviour 
Approximate methods 
Approximate methods in cognition: Sampling
Discovering the probabilistic models used by humans 
Using learned statistical regularities: coding and compression
Theory of coding and compression in memory processes
Effective probabilistic models: nonparametric models
Nonparametric models in cognition: memory dynamics 
Learning the structure of probabilistic models
Structure learning in cognition: causal learning
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RECAP: rational analysis
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A wing would be the most mystifying structure if one did 
not know that birds flew. One might observe that it could 
be extended a considerable distance, that it had smooth 
covering of feathers with conspicuous markings, that it was 
operated by powerful muscles, and that strength and 
lightness were prominent features of its constructions. 
These are important facts, but in themselves they do not 
tell us that birds fly. Yet, without knowing this and without 
understanding something of the principles of flight, a more 
detailed examination of the wing itself would probably be 
unrewarding.

Horace Barlow 
Trinity College, 
Cambridge
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operated by powerful muscles, and that strength and 
lightness were prominent features of its constructions. 
These are important facts, but in themselves they do not 
tell us that birds fly. Yet, without knowing this and without 
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Trinity College, 
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Sensory communication (1962) MIT Press
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logic function: new propositions using basic operations 
(conjunction, disjunction, negation, implication)

𝖢 = f(𝖠, 𝖡) = (𝖠 + 𝖡)(𝖠 + 𝖠𝖡) + 𝖠𝖡(𝖠 + 𝖡)
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• a finite set of operations is sufficient to cover the full proposition 
space

disjunctive normal form

A, B TT TF FT FF

T F F F

F T F F

F F T F

F F F T

f1(𝖠, 𝖡)

f2(𝖠, 𝖡)

f3(𝖠, 𝖡)

f4(𝖠, 𝖡)

arbitrary f (A, B) can  
be composed
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• a finite set of operations is sufficient to cover the full proposition 
space

• rational analysis can be performed in a world where truth values 
of statements can be established

TMx f(x)

UTM
x f(x)TM

Turing machine 
an agent can be constructed that can perform an arbitrary function

Universal Turing machine 
irrespective of the language used one can construct such computing machines
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RECAP: deductive reasoning
• propositional logic: reasoning can be systematically 

performed 

7

• a finite set of operations is sufficient to cover the full proposition 
space

• rational analysis can be performed in a world where truth values 
of statements can be established

UTM
x f(x)TM

propositional logic

Universal Turing machine

first order logic

λ-calculus

extension: 
predicates 
logical connectives 
quantifiers 

expressive pow
er

rules of chess 

in prop logic: 
1000 pages 
 
in first o. logic: 
1 page 
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Is this the whole story? — Challenges

• Scope of deductive reasoning is limited:  
we need to make inferences in uncertain situations
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• It is unclear how to construct adaptive forms of reasoning: 
training is hard, hand engineering is required
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Computational Cognitive Science

Rational analysis revisited
• Are there ways to formalise plausible reasoning?

• Is there a rational way to approach this problem?

• What exactly determines how much the observation of Aristotle’s reading 
skills alters the plausibility of him being a philosopher?

• In deductive reasoning, the veracity of statements can be identified after 
exhaustive chains of inferences. In plausible reasoning uncertainty grows 
with subsequent iterations. Can this be characterised?

• Discovering an efficient math behind plausible reasoning can provide a 
useful tool to model cognitive processes

• What does this do with ‘weakly’ rational behaviour at Wason’s card 
selection task?

10
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Computational Cognitive Science

Common sense: Plausible reasoning

• The truth value of many statements cannot be fully determined

• Reasoning in uncertain situations is both useful and possible:  
we cannot rely on deductive reasoning

• We do it automatically while making inferences,  
terming it common sense

• Importantly, common sense is not an arbitrary relaxation of rules:  
George Pólya formalised a compact set of desiderata for reasoning

11

if A is true then B is true

therefore, A becomes more plausible

B is true

if A is true then B is true

therefore, B becomes less plausible

A is false

weak syllogisms
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Artificial agent revisited

• We are pursuing common sense reasoning to understand 
thinking 

• This provides better tools to build ‘machines that think’, i.e. 
better AI 

• The rational agent developed provides a normative 
approach to human behaviour, in other words: 

• ‘rules will be deduced from simple desiderata which, it 
appears to us, would be desirable in human brains; i.e. we 
think that a rational person, on discovering that they were 
violating one of these desiderata, would wish to revise their 
thinking’, Jaynes

12
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1 1 1 1

1 1 0 1

0 1 1 1

1 0 0 0

0 1 1 0
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0 0 0 1

what is the truth value of            ?𝖲 → 𝖫
• Aristotle wants to learn about the effectiveness of his teaching

possible experiment outcomes
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Plausibilities

13

scribbling excited look learning possible?

1 1 1 1

1 1 0 1

0 1 1 1

1 0 0 0

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 1

How to establish numerical values for plausibilities?

what is the truth value of            ?𝖲 → 𝖫
• Aristotle wants to learn about the effectiveness of his teaching

possible experiment outcomes
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Rational desiderata
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14

• The proposition needs to be assigned a plausibility based on available evidence: 
the conditional plausibility that A is true, given that B is true, 
  

• The richness of real numbers is required by theory 

• Convention: larger plausibility corresponds to higher numbers

𝖠 |𝖡

combining predicaments:
the plausibility that A is true, given that both B and C are true: 

𝖠 |𝖡𝖢

the plausibility that at least one of the propositions A and B is true,  
given that both C and D are true: 

𝖠 + 𝖡 |𝖢𝖣
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• Qualitative match of the formalism with common sense is 
required 

• If 
and  
then                             &   

• Provides ‘sense of direction’

(𝖠 |𝖢′￼) > (𝖠 |𝖢)
(𝖡 |𝖠𝖢′￼) = (𝖡 |𝖠𝖢)
(𝖠𝖡 |𝖢′￼) ≥ (𝖠𝖡 |𝖢) (𝖠 |𝖢′￼) < (𝖠 |𝖢)
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1. Level of certainty is expressed with real numbers 
2. Qualitative correspondence with common sense  
3. Consistency

Rational desiderata

16

• 3.a, Alternative ways to achieve conclusion lead to the same 
result 

• 3.b, All evidence is taken into account by the agent 

• 3.c, Equivalent state of knowledge is represented by equal 
level of plausibility 
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Cox’s theorem

• The three desiderata uniquely determine the mathematical form of 
representation of plausibility 

• Plausibility has to behave as probability

17

Fundamental laws of probability (Kolmogorov’s axioms)  
directly come from the three desiderata

Kolmogorov axioms 

1. Probability is a real number between 0 and 1 
2. Certainty is represented by  

Certain falsehood:  
3.   
+1 Conjunction: 

𝖯(𝖠 |𝖡) = 𝟣
𝖯(𝖠 |𝖡) = 𝟢

𝖯(𝖠 |𝖡) + 𝖯(𝖠 |𝖡) = 𝟣
𝖯(𝖠𝖡 |𝖢) = 𝖯(𝖠 |𝖡𝖢)𝖯(𝖡 |𝖢)
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Fundamental laws of probability (Kolmogorov’s axioms)  
directly come from the three desiderata

Kolmogorov axioms 

1. Probability is a real number between 0 and 1 
2. Certainty is represented by  

Certain falsehood:  
3.   
+1 Conjunction: 
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𝖯(𝖠𝖡 |𝖢) = 𝖯(𝖠 |𝖡𝖢)𝖯(𝖡 |𝖢)

We can use these to express operations in plausible reasoning

It will have similar power than deductive reasoning, but extends it
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Dutch book argument

• Assume that we are willing to take bets with odds 
proportional to the probability of the occurrence of events 

• If the plausibilities are not behaving according to the rules of 
probabilities then we will certainly loose money against 
someone using that strategy

18

In an environment where truth values of statements cannot fully 
determined, a probabilistic description is lucrative
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scribbling excited look learning P(S,E,L)

1 1 1 0.2
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1 0 0 0.17

… … …

0 0 0 0.43

possible experiment outcomes

∑ 𝖯(𝖠, 𝖤, 𝖫) = 𝟣
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Instead of truth tables, we extended the scope of propositions

The probability table fully characterises the system

scribbling excited look learning P(S,E,L)

1 1 1 0.2

1 1 0 0.1

0 1 1 0.06

1 0 0 0.17

… … …

0 0 0 0.43

possible experiment outcomes
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scribbling excited look learning P(S,E,L)

1 1 1 0.2

1 1 0 0.1

0 1 1 0.06

1 0 0 0.17

… … …

0 0 0 0.43

𝖯(𝖫 |s, e) = ?
Goal: infer the probability of learning given the disciple wrote feverishly

∑ 𝖯𝗂 = 𝟣
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Algebra on probabilities?

21

Propositions: A, B, C

A B — logical product  or  conjunction
‘both of the propositions, A, B are true’

A + B — logical sum  or  disjunction
‘at least one of the propositions, A, B is true’

George Boole, 1815-1864
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Sum rule

22

𝖯(l) = 𝖯(s, l) + 𝖯(s, l)

P the disciple has learned the course material

P she learned and was scribbling
OR

P she learned and was not  scribbling

𝖯(x) = ∑
y∈𝖸

𝖯(x, y)

also known as marginalisation 

in general cases when stochastic variables can take more values:

scribbling learning P(S,L)

1 1 0.45

1 0 0.05

0 1 0.15

0 0 0.35

Stochastic variable L taking value l

+ 𝖯(l) = 𝟢 . 𝟨
𝖯(l ) = 𝟢 . 𝟦
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Product rule

23

𝖯(s, l) = 𝖯(l |s)𝖯(s)

This turned up at the Cox theorem, 
being a consequence of the Consistency desideratum

P the disciple has scribbled and she learned the course material

P the disciple has learned the course material if she was scribbling AND 
P she was scribbling

chain rule
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scribbling excited look learning P(S,E,L)

1 1 1 0.2

1 1 0 0.1

0 1 1 0.06

1 0 0 0.17

… … …

0 0 0 0.43

Goal: infer the probability of learning given the disciple wrote feverishly

• Use the chain rule to construct the conditional probability:

𝖯(𝖠 |𝖡) =
𝖯(𝖠, 𝖡)

𝖯(𝖡)

∑ 𝖯𝗂 = 𝟣

𝖯(s, e, l) = 𝖯(l |s, e)𝖯(s, e)

𝖯(𝖫 |s, e) = ?

• Probability of A assuming B is known (‘given B’):

P(l |s, e) =
𝖯(s, e, l)
𝖯(s, e)
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Computational Cognitive Science

Interim summary

• Probabilities can be used as a basis of plausible reasoning 

• Instead of the truth table, the probability table describes the 
system 

• Rich inferences can be made 

• Using the two fundamental rules of probability theory, the 
sum and the product rules we can express these inferences

26
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• Complete characterisation requires filling the probability table 

• Number of lines in the probability table increases drastically with 
the number of variables 

• How many parameters?  
(how many numbers need to be given to specify the 
probabilistic model?)
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Graphical models
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Benefits of a graphical model representation

• helps in visualising the structure of the probabilistic model 

• provides insights into the properties of the model  
(e.g. conditional independence) 

• complex calculations for inference and learning can be 
expressed in graphical terms

31



Computational Cognitive Science

Computational insight

32

Independence:

𝖷 ⊥ 𝖸 𝖯(𝖷, 𝖸) = 𝖯(𝖷)𝖯(𝖸)
𝖯(𝖷) = 𝖯(𝖷 |𝖸)

X1

X2



Computational Cognitive Science

Computational insight

32

Independence:

𝖷 ⊥ 𝖸 𝖯(𝖷, 𝖸) = 𝖯(𝖷)𝖯(𝖸)
𝖯(𝖷) = 𝖯(𝖷 |𝖸)

𝖷 ⊥ 𝖸 |𝖹 𝖯(𝖷, 𝖸 |𝖹) = 𝖯(𝖷 |𝖹)𝖯(𝖸 |𝖹)
𝖯(𝖷 |𝖹) = 𝖯(𝖷 |𝖸, 𝖹)

Conditional independence:

X1

X2



Computational Cognitive Science

Computational insight

32

Independence:

𝖷 ⊥ 𝖸 𝖯(𝖷, 𝖸) = 𝖯(𝖷)𝖯(𝖸)
𝖯(𝖷) = 𝖯(𝖷 |𝖸)

𝖷 ⊥ 𝖸 |𝖹 𝖯(𝖷, 𝖸 |𝖹) = 𝖯(𝖷 |𝖹)𝖯(𝖸 |𝖹)
𝖯(𝖷 |𝖹) = 𝖯(𝖷 |𝖸, 𝖹)

Conditional independence:

X3

X1

X2



Computational Cognitive Science

Computational insight

32

Independence:

𝖷 ⊥ 𝖸 𝖯(𝖷, 𝖸) = 𝖯(𝖷)𝖯(𝖸)
𝖯(𝖷) = 𝖯(𝖷 |𝖸)

𝖷 ⊥ 𝖸 |𝖹 𝖯(𝖷, 𝖸 |𝖹) = 𝖯(𝖷 |𝖹)𝖯(𝖸 |𝖹)
𝖯(𝖷 |𝖹) = 𝖯(𝖷 |𝖸, 𝖹)

Conditional independence:

Example: X3

X1

X2



Computational Cognitive Science

Computational insight

32

Independence:

𝖷 ⊥ 𝖸 𝖯(𝖷, 𝖸) = 𝖯(𝖷)𝖯(𝖸)
𝖯(𝖷) = 𝖯(𝖷 |𝖸)

𝖷 ⊥ 𝖸 |𝖹 𝖯(𝖷, 𝖸 |𝖹) = 𝖯(𝖷 |𝖹)𝖯(𝖸 |𝖹)
𝖯(𝖷 |𝖹) = 𝖯(𝖷 |𝖸, 𝖹)

Conditional independence:

Example: X3

X1

X2

𝖯(𝖷𝟣, 𝖷𝟤, 𝖷𝟥) = 𝖯(𝖷𝟣 |𝖷𝟤, 𝖷𝟥)𝖯(𝖷𝟤 |𝖷𝟥)𝖯(𝖷𝟥)



Computational Cognitive Science

Computational insight

32

Independence:

𝖷 ⊥ 𝖸 𝖯(𝖷, 𝖸) = 𝖯(𝖷)𝖯(𝖸)
𝖯(𝖷) = 𝖯(𝖷 |𝖸)

𝖷 ⊥ 𝖸 |𝖹 𝖯(𝖷, 𝖸 |𝖹) = 𝖯(𝖷 |𝖹)𝖯(𝖸 |𝖹)
𝖯(𝖷 |𝖹) = 𝖯(𝖷 |𝖸, 𝖹)

Conditional independence:

Example: X3

X1

X2

𝖯(𝖷𝟣, 𝖷𝟤, 𝖷𝟥) = 𝖯(𝖷𝟣 |𝖷𝟤, 𝖷𝟥)𝖯(𝖷𝟤 |𝖷𝟥)𝖯(𝖷𝟥)



Computational Cognitive Science

Computational insight

32

Independence:

𝖷 ⊥ 𝖸 𝖯(𝖷, 𝖸) = 𝖯(𝖷)𝖯(𝖸)
𝖯(𝖷) = 𝖯(𝖷 |𝖸)

𝖷 ⊥ 𝖸 |𝖹 𝖯(𝖷, 𝖸 |𝖹) = 𝖯(𝖷 |𝖹)𝖯(𝖸 |𝖹)
𝖯(𝖷 |𝖹) = 𝖯(𝖷 |𝖸, 𝖹)

Conditional independence:

Example: X3

X1

X2

𝖯(𝖷𝟣, 𝖷𝟤, 𝖷𝟥) = 𝖯(𝖷𝟣 |𝖷𝟤, 𝖷𝟥)𝖯(𝖷𝟤 |𝖷𝟥)𝖯(𝖷𝟥)

𝖷𝟣 ⊥ 𝖷𝟥 |𝖷𝟤



Computational Cognitive Science

Computational insight

32

Independence:

𝖷 ⊥ 𝖸 𝖯(𝖷, 𝖸) = 𝖯(𝖷)𝖯(𝖸)
𝖯(𝖷) = 𝖯(𝖷 |𝖸)

𝖷 ⊥ 𝖸 |𝖹 𝖯(𝖷, 𝖸 |𝖹) = 𝖯(𝖷 |𝖹)𝖯(𝖸 |𝖹)
𝖯(𝖷 |𝖹) = 𝖯(𝖷 |𝖸, 𝖹)

Conditional independence:

Example: X3

X1

X2

𝖯(𝖷𝟣, 𝖷𝟤, 𝖷𝟥) = 𝖯(𝖷𝟣 |𝖷𝟤, 𝖷𝟥)𝖯(𝖷𝟤 |𝖷𝟥)𝖯(𝖷𝟥)

𝖷𝟣 ⊥ 𝖷𝟥 |𝖷𝟤

= 𝖯(𝖷𝟣 |𝖷𝟤)𝖯(𝖷𝟤 |𝖷𝟥)𝖯(𝖷𝟥)



Computational Cognitive Science

Computational insight

32

Independence:

𝖷 ⊥ 𝖸 𝖯(𝖷, 𝖸) = 𝖯(𝖷)𝖯(𝖸)
𝖯(𝖷) = 𝖯(𝖷 |𝖸)

𝖷 ⊥ 𝖸 |𝖹 𝖯(𝖷, 𝖸 |𝖹) = 𝖯(𝖷 |𝖹)𝖯(𝖸 |𝖹)
𝖯(𝖷 |𝖹) = 𝖯(𝖷 |𝖸, 𝖹)

Conditional independence:

Example: X3

X1

X2

𝖯(𝖷𝟣, 𝖷𝟤, 𝖷𝟥) = 𝖯(𝖷𝟣 |𝖷𝟤, 𝖷𝟥)𝖯(𝖷𝟤 |𝖷𝟥)𝖯(𝖷𝟥)

𝖷𝟣 ⊥ 𝖷𝟥 |𝖷𝟤

= 𝖯(𝖷𝟣 |𝖷𝟤)𝖯(𝖷𝟤 |𝖷𝟥)𝖯(𝖷𝟥)
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∏
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the model how the world works: 
how observations are determined by 
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𝖯(𝖮 |𝖧)

recognition model

inverting the generative model: 
inferences / reasoning about 
observed data
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measurement:  
measuring the probability of coughing when having a flu or not

inference:  
infer the probability of a hypothesis under different conditions

what is the connection between the two quantities?

remember: multiplication rule:

or equivalently:

Bayes rule: ‘inverts’ a probabilistic relationship
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P (x) summarises all the possible values of a variable in a single function

Diszkrét és folytonos valószínűségi változók
• Foglaljuk össze minden lehetséges érték valószínűségét egy függvényben 

• Diszrét értékkészletű változók 

• egyszerűen megadjuk az összes értéket 

• valószínűségi tömegfüggvény (pr. mass function) 

• Folytonos értékkészletű változók 

• minden konkrét érték valószínűsége nulla 

• intervallumoknak van pozitív valószínűsége 

• sűrűségfüggvény (pr. density function)
Pr(a < x < b) =

P (x)

x
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• continuous variables 
• the probability of any particular value is equal to 0 
• a finite interval on the variable can have a probability 

different from 0 
• the function is a probability density function
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Examples of probability distributions
• Discrete valued 

• Bernoulli — coin toss 

• multinomial — dice throwing 

• Continuous valued 

• uniform 

• Gaussian (normal) 

• Gamma

38

Parametrikus eloszláscsaládok
• Diszkrét értékű 

• Bernoulli: pénzfeldobás - érme 
aszimmetriája - p(x) = Ber(x;β) 

• multinomiális: kockadobás - cinkelés - 
Mult(x;β1..βk-1) 

• Folytonos értékű 

• egyenletes - minimum, maximum - U(x;α,β) 

• Gauss (normál): szimmetrikus - átlag, 
szórás (kovarianciamátrix) - N(x;μ,C) 

• Gamma: pozitív - alak, skála - Gam(x;k,θ)

Normal(x;µ,�) =
1p
2⇡�

exp

 
� (x� µ)2

2�2

!

Ber (x; p) = px · (1� p)(1�x)
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Reason #1
limited information

⤳

uncertainty in inferences
Formally: 
• multiple hypotheses 
• alternative hypotheses characterised by different probabilities
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When we interpret a shaded picture as a three-dimensional (3D)
scene, our visual system often needs to guess the position of the light
source in order to resolve a convex-concave ambiguity. For more
than a century, psychologists have known that the visual system
assumes that light comes from above and have argued that this
assumption is ecologically justified because our everyday light source
(the sun) is overhead. Our experiments reveal that people’s preferred
lighting direction is not directly overhead, but rather shifted to the
left, and this preference is reflected in art spanning two millennia.
Furthermore, we find a strong correlation between people’s hand-
edness and their preferred lighting. We suggest that what counts is
not so much where the sun is, but where you like the sun to be.

The shaded shapes in Fig. 1a are typically perceived as convex
bubbles surrounding concave indentations, all lit from above. Note
that this image is also consistent with a different physical scene:
indentations surrounding bubbles, all lit from below. This second
perception, however, is difficult to achieve. Such an asymmetry
between the perceptual saliency of equally valid 3D interpretations
demonstrates that our visual system prefers the assumption that
light is coming from above1–3. Does this preference apply uniform-
ly to all lighting directions that are above the horizon? Perhaps there
is instead a preferred direction? If so, one might reason it to be direct-
ly overhead. Is this intuitive guess correct?

We addressed these questions by measuring the time it takes
to detect, within a group of ‘distractor’ bubbles, a single ‘target’
bubble that is lit differently (Fig. 1b). Recent studies suggests that
the light-from-above assumption is used by the visual system for
interpreting quickly and in parallel some basic aspects of 3D
scenes4–8; the target pattern may be detected quickly (pop-out)
only when the distractors, but not the target, can be interpreted
as convex and lit from above5–9. We simulated different directions
of lighting by varying the shading gradient of the distractor bub-
bles. The target bubble was shaded to simulate illumination from
the opposite direction (Fig. 1b).

Data from twelve naive subjects shows that the visual system
does not respond uniformly to all lighting directions that are above
the horizon (Fig. 1c). There is clearly a preferred direction of light-
ing where detection requires the shortest display time. Surpris-
ingly, this preferred direction is not directly overhead (zero
degrees). Subject PG, for instance, performs best with a lighting
direction that is between 30 and 60 degrees left of the vertical
(Fig. 1c). Furthermore, there is a consistent preference for left light-
ing over right lighting. This same marked left–right asymmetry is
evident in the averaged data of all twelve subjects. As the angle of
illumination increases, the preference for left lighting becomes
increasingly pronounced (Fig. 1d).

This asymmetry in our data may explain a qualitative observa-
tion made by Gestalt psychologist Metzger, who noted that left-lit
scenes have a superior perceptual value over right-lit ones10. He
ascribed this asymmetry to the convention of setting up desk lamps
on the left, presumably so that the writing hand does not cast a
shadow on the page. Over time, he hypothesized, one learns to per-
ceive left-lit scenes as being more ‘natural’. Metzger’s explanation
may be somewhat restrictive: our visual environment extends
beyond our writing desk. We tend to position a movable light
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Fig. 1. Shaded displays that may be interpreted as 3D shapes and measurement of preferred
lighting direction. (a) Rotate the page to invert the shapes. (b) Images were generated on a
Silicon Graphics Indigo2. Each ̀ bubble’ spanned approximately one degree. One target pattern
was present at random among 23 distractor patterns in 50% of the trials. The remaining trials
contained 24 distractors and no target. The lighting direction is determined by the shading gra-
dient of the distractors. Target-present test screens are shown for 2 of the 12 lighting direc-
tions used in our experiment. We denote a lighting direction by its deviation from the vertical
in degrees. Positive degrees indicate lighting from the left, and negative degrees indicate lighting
from the right. Accordingly, lighting from directly overhead is designated as 0 degrees, and light-
ing from directly below as 180 degrees. (c) We used a two-alternative forced-choice stimulus
onset asynchrony (SOA) design with masking. Data was collected using a staircase method that
converged at 67% accuracy performance. The most frequently visited (MFV) duration within
each block was used to estimate 67% accuracy performance. The duration necessary for 67%
accuracy for each lighting direction is shown for subject PG. (d) We computed the mean dif-
ference in necessary display duration between pairs of corresponding left-right lighting direc-
tions over all 12 naive subjects. The necessary duration for a left-lighting condition is
subtracted from the necessary duration for the corresponding right-lighting condition.
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When we interpret a shaded picture as a three-dimensional (3D)
scene, our visual system often needs to guess the position of the light
source in order to resolve a convex-concave ambiguity. For more
than a century, psychologists have known that the visual system
assumes that light comes from above and have argued that this
assumption is ecologically justified because our everyday light source
(the sun) is overhead. Our experiments reveal that people’s preferred
lighting direction is not directly overhead, but rather shifted to the
left, and this preference is reflected in art spanning two millennia.
Furthermore, we find a strong correlation between people’s hand-
edness and their preferred lighting. We suggest that what counts is
not so much where the sun is, but where you like the sun to be.

The shaded shapes in Fig. 1a are typically perceived as convex
bubbles surrounding concave indentations, all lit from above. Note
that this image is also consistent with a different physical scene:
indentations surrounding bubbles, all lit from below. This second
perception, however, is difficult to achieve. Such an asymmetry
between the perceptual saliency of equally valid 3D interpretations
demonstrates that our visual system prefers the assumption that
light is coming from above1–3. Does this preference apply uniform-
ly to all lighting directions that are above the horizon? Perhaps there
is instead a preferred direction? If so, one might reason it to be direct-
ly overhead. Is this intuitive guess correct?

We addressed these questions by measuring the time it takes
to detect, within a group of ‘distractor’ bubbles, a single ‘target’
bubble that is lit differently (Fig. 1b). Recent studies suggests that
the light-from-above assumption is used by the visual system for
interpreting quickly and in parallel some basic aspects of 3D
scenes4–8; the target pattern may be detected quickly (pop-out)
only when the distractors, but not the target, can be interpreted
as convex and lit from above5–9. We simulated different directions
of lighting by varying the shading gradient of the distractor bub-
bles. The target bubble was shaded to simulate illumination from
the opposite direction (Fig. 1b).

Data from twelve naive subjects shows that the visual system
does not respond uniformly to all lighting directions that are above
the horizon (Fig. 1c). There is clearly a preferred direction of light-
ing where detection requires the shortest display time. Surpris-
ingly, this preferred direction is not directly overhead (zero
degrees). Subject PG, for instance, performs best with a lighting
direction that is between 30 and 60 degrees left of the vertical
(Fig. 1c). Furthermore, there is a consistent preference for left light-
ing over right lighting. This same marked left–right asymmetry is
evident in the averaged data of all twelve subjects. As the angle of
illumination increases, the preference for left lighting becomes
increasingly pronounced (Fig. 1d).

This asymmetry in our data may explain a qualitative observa-
tion made by Gestalt psychologist Metzger, who noted that left-lit
scenes have a superior perceptual value over right-lit ones10. He
ascribed this asymmetry to the convention of setting up desk lamps
on the left, presumably so that the writing hand does not cast a
shadow on the page. Over time, he hypothesized, one learns to per-
ceive left-lit scenes as being more ‘natural’. Metzger’s explanation
may be somewhat restrictive: our visual environment extends
beyond our writing desk. We tend to position a movable light
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Fig. 1. Shaded displays that may be interpreted as 3D shapes and measurement of preferred
lighting direction. (a) Rotate the page to invert the shapes. (b) Images were generated on a
Silicon Graphics Indigo2. Each ̀ bubble’ spanned approximately one degree. One target pattern
was present at random among 23 distractor patterns in 50% of the trials. The remaining trials
contained 24 distractors and no target. The lighting direction is determined by the shading gra-
dient of the distractors. Target-present test screens are shown for 2 of the 12 lighting direc-
tions used in our experiment. We denote a lighting direction by its deviation from the vertical
in degrees. Positive degrees indicate lighting from the left, and negative degrees indicate lighting
from the right. Accordingly, lighting from directly overhead is designated as 0 degrees, and light-
ing from directly below as 180 degrees. (c) We used a two-alternative forced-choice stimulus
onset asynchrony (SOA) design with masking. Data was collected using a staircase method that
converged at 67% accuracy performance. The most frequently visited (MFV) duration within
each block was used to estimate 67% accuracy performance. The duration necessary for 67%
accuracy for each lighting direction is shown for subject PG. (d) We computed the mean dif-
ference in necessary display duration between pairs of corresponding left-right lighting direc-
tions over all 12 naive subjects. The necessary duration for a left-lighting condition is
subtracted from the necessary duration for the corresponding right-lighting condition.
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When we interpret a shaded picture as a three-dimensional (3D)
scene, our visual system often needs to guess the position of the light
source in order to resolve a convex-concave ambiguity. For more
than a century, psychologists have known that the visual system
assumes that light comes from above and have argued that this
assumption is ecologically justified because our everyday light source
(the sun) is overhead. Our experiments reveal that people’s preferred
lighting direction is not directly overhead, but rather shifted to the
left, and this preference is reflected in art spanning two millennia.
Furthermore, we find a strong correlation between people’s hand-
edness and their preferred lighting. We suggest that what counts is
not so much where the sun is, but where you like the sun to be.

The shaded shapes in Fig. 1a are typically perceived as convex
bubbles surrounding concave indentations, all lit from above. Note
that this image is also consistent with a different physical scene:
indentations surrounding bubbles, all lit from below. This second
perception, however, is difficult to achieve. Such an asymmetry
between the perceptual saliency of equally valid 3D interpretations
demonstrates that our visual system prefers the assumption that
light is coming from above1–3. Does this preference apply uniform-
ly to all lighting directions that are above the horizon? Perhaps there
is instead a preferred direction? If so, one might reason it to be direct-
ly overhead. Is this intuitive guess correct?

We addressed these questions by measuring the time it takes
to detect, within a group of ‘distractor’ bubbles, a single ‘target’
bubble that is lit differently (Fig. 1b). Recent studies suggests that
the light-from-above assumption is used by the visual system for
interpreting quickly and in parallel some basic aspects of 3D
scenes4–8; the target pattern may be detected quickly (pop-out)
only when the distractors, but not the target, can be interpreted
as convex and lit from above5–9. We simulated different directions
of lighting by varying the shading gradient of the distractor bub-
bles. The target bubble was shaded to simulate illumination from
the opposite direction (Fig. 1b).

Data from twelve naive subjects shows that the visual system
does not respond uniformly to all lighting directions that are above
the horizon (Fig. 1c). There is clearly a preferred direction of light-
ing where detection requires the shortest display time. Surpris-
ingly, this preferred direction is not directly overhead (zero
degrees). Subject PG, for instance, performs best with a lighting
direction that is between 30 and 60 degrees left of the vertical
(Fig. 1c). Furthermore, there is a consistent preference for left light-
ing over right lighting. This same marked left–right asymmetry is
evident in the averaged data of all twelve subjects. As the angle of
illumination increases, the preference for left lighting becomes
increasingly pronounced (Fig. 1d).

This asymmetry in our data may explain a qualitative observa-
tion made by Gestalt psychologist Metzger, who noted that left-lit
scenes have a superior perceptual value over right-lit ones10. He
ascribed this asymmetry to the convention of setting up desk lamps
on the left, presumably so that the writing hand does not cast a
shadow on the page. Over time, he hypothesized, one learns to per-
ceive left-lit scenes as being more ‘natural’. Metzger’s explanation
may be somewhat restrictive: our visual environment extends
beyond our writing desk. We tend to position a movable light
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Fig. 1. Shaded displays that may be interpreted as 3D shapes and measurement of preferred
lighting direction. (a) Rotate the page to invert the shapes. (b) Images were generated on a
Silicon Graphics Indigo2. Each ̀ bubble’ spanned approximately one degree. One target pattern
was present at random among 23 distractor patterns in 50% of the trials. The remaining trials
contained 24 distractors and no target. The lighting direction is determined by the shading gra-
dient of the distractors. Target-present test screens are shown for 2 of the 12 lighting direc-
tions used in our experiment. We denote a lighting direction by its deviation from the vertical
in degrees. Positive degrees indicate lighting from the left, and negative degrees indicate lighting
from the right. Accordingly, lighting from directly overhead is designated as 0 degrees, and light-
ing from directly below as 180 degrees. (c) We used a two-alternative forced-choice stimulus
onset asynchrony (SOA) design with masking. Data was collected using a staircase method that
converged at 67% accuracy performance. The most frequently visited (MFV) duration within
each block was used to estimate 67% accuracy performance. The duration necessary for 67%
accuracy for each lighting direction is shown for subject PG. (d) We computed the mean dif-
ference in necessary display duration between pairs of corresponding left-right lighting direc-
tions over all 12 naive subjects. The necessary duration for a left-lighting condition is
subtracted from the necessary duration for the corresponding right-lighting condition.
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When we interpret a shaded picture as a three-dimensional (3D)
scene, our visual system often needs to guess the position of the light
source in order to resolve a convex-concave ambiguity. For more
than a century, psychologists have known that the visual system
assumes that light comes from above and have argued that this
assumption is ecologically justified because our everyday light source
(the sun) is overhead. Our experiments reveal that people’s preferred
lighting direction is not directly overhead, but rather shifted to the
left, and this preference is reflected in art spanning two millennia.
Furthermore, we find a strong correlation between people’s hand-
edness and their preferred lighting. We suggest that what counts is
not so much where the sun is, but where you like the sun to be.

The shaded shapes in Fig. 1a are typically perceived as convex
bubbles surrounding concave indentations, all lit from above. Note
that this image is also consistent with a different physical scene:
indentations surrounding bubbles, all lit from below. This second
perception, however, is difficult to achieve. Such an asymmetry
between the perceptual saliency of equally valid 3D interpretations
demonstrates that our visual system prefers the assumption that
light is coming from above1–3. Does this preference apply uniform-
ly to all lighting directions that are above the horizon? Perhaps there
is instead a preferred direction? If so, one might reason it to be direct-
ly overhead. Is this intuitive guess correct?

We addressed these questions by measuring the time it takes
to detect, within a group of ‘distractor’ bubbles, a single ‘target’
bubble that is lit differently (Fig. 1b). Recent studies suggests that
the light-from-above assumption is used by the visual system for
interpreting quickly and in parallel some basic aspects of 3D
scenes4–8; the target pattern may be detected quickly (pop-out)
only when the distractors, but not the target, can be interpreted
as convex and lit from above5–9. We simulated different directions
of lighting by varying the shading gradient of the distractor bub-
bles. The target bubble was shaded to simulate illumination from
the opposite direction (Fig. 1b).

Data from twelve naive subjects shows that the visual system
does not respond uniformly to all lighting directions that are above
the horizon (Fig. 1c). There is clearly a preferred direction of light-
ing where detection requires the shortest display time. Surpris-
ingly, this preferred direction is not directly overhead (zero
degrees). Subject PG, for instance, performs best with a lighting
direction that is between 30 and 60 degrees left of the vertical
(Fig. 1c). Furthermore, there is a consistent preference for left light-
ing over right lighting. This same marked left–right asymmetry is
evident in the averaged data of all twelve subjects. As the angle of
illumination increases, the preference for left lighting becomes
increasingly pronounced (Fig. 1d).

This asymmetry in our data may explain a qualitative observa-
tion made by Gestalt psychologist Metzger, who noted that left-lit
scenes have a superior perceptual value over right-lit ones10. He
ascribed this asymmetry to the convention of setting up desk lamps
on the left, presumably so that the writing hand does not cast a
shadow on the page. Over time, he hypothesized, one learns to per-
ceive left-lit scenes as being more ‘natural’. Metzger’s explanation
may be somewhat restrictive: our visual environment extends
beyond our writing desk. We tend to position a movable light
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Fig. 1. Shaded displays that may be interpreted as 3D shapes and measurement of preferred
lighting direction. (a) Rotate the page to invert the shapes. (b) Images were generated on a
Silicon Graphics Indigo2. Each ̀ bubble’ spanned approximately one degree. One target pattern
was present at random among 23 distractor patterns in 50% of the trials. The remaining trials
contained 24 distractors and no target. The lighting direction is determined by the shading gra-
dient of the distractors. Target-present test screens are shown for 2 of the 12 lighting direc-
tions used in our experiment. We denote a lighting direction by its deviation from the vertical
in degrees. Positive degrees indicate lighting from the left, and negative degrees indicate lighting
from the right. Accordingly, lighting from directly overhead is designated as 0 degrees, and light-
ing from directly below as 180 degrees. (c) We used a two-alternative forced-choice stimulus
onset asynchrony (SOA) design with masking. Data was collected using a staircase method that
converged at 67% accuracy performance. The most frequently visited (MFV) duration within
each block was used to estimate 67% accuracy performance. The duration necessary for 67%
accuracy for each lighting direction is shown for subject PG. (d) We computed the mean dif-
ference in necessary display duration between pairs of corresponding left-right lighting direc-
tions over all 12 naive subjects. The necessary duration for a left-lighting condition is
subtracted from the necessary duration for the corresponding right-lighting condition.
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When we interpret a shaded picture as a three-dimensional (3D)
scene, our visual system often needs to guess the position of the light
source in order to resolve a convex-concave ambiguity. For more
than a century, psychologists have known that the visual system
assumes that light comes from above and have argued that this
assumption is ecologically justified because our everyday light source
(the sun) is overhead. Our experiments reveal that people’s preferred
lighting direction is not directly overhead, but rather shifted to the
left, and this preference is reflected in art spanning two millennia.
Furthermore, we find a strong correlation between people’s hand-
edness and their preferred lighting. We suggest that what counts is
not so much where the sun is, but where you like the sun to be.

The shaded shapes in Fig. 1a are typically perceived as convex
bubbles surrounding concave indentations, all lit from above. Note
that this image is also consistent with a different physical scene:
indentations surrounding bubbles, all lit from below. This second
perception, however, is difficult to achieve. Such an asymmetry
between the perceptual saliency of equally valid 3D interpretations
demonstrates that our visual system prefers the assumption that
light is coming from above1–3. Does this preference apply uniform-
ly to all lighting directions that are above the horizon? Perhaps there
is instead a preferred direction? If so, one might reason it to be direct-
ly overhead. Is this intuitive guess correct?

We addressed these questions by measuring the time it takes
to detect, within a group of ‘distractor’ bubbles, a single ‘target’
bubble that is lit differently (Fig. 1b). Recent studies suggests that
the light-from-above assumption is used by the visual system for
interpreting quickly and in parallel some basic aspects of 3D
scenes4–8; the target pattern may be detected quickly (pop-out)
only when the distractors, but not the target, can be interpreted
as convex and lit from above5–9. We simulated different directions
of lighting by varying the shading gradient of the distractor bub-
bles. The target bubble was shaded to simulate illumination from
the opposite direction (Fig. 1b).

Data from twelve naive subjects shows that the visual system
does not respond uniformly to all lighting directions that are above
the horizon (Fig. 1c). There is clearly a preferred direction of light-
ing where detection requires the shortest display time. Surpris-
ingly, this preferred direction is not directly overhead (zero
degrees). Subject PG, for instance, performs best with a lighting
direction that is between 30 and 60 degrees left of the vertical
(Fig. 1c). Furthermore, there is a consistent preference for left light-
ing over right lighting. This same marked left–right asymmetry is
evident in the averaged data of all twelve subjects. As the angle of
illumination increases, the preference for left lighting becomes
increasingly pronounced (Fig. 1d).

This asymmetry in our data may explain a qualitative observa-
tion made by Gestalt psychologist Metzger, who noted that left-lit
scenes have a superior perceptual value over right-lit ones10. He
ascribed this asymmetry to the convention of setting up desk lamps
on the left, presumably so that the writing hand does not cast a
shadow on the page. Over time, he hypothesized, one learns to per-
ceive left-lit scenes as being more ‘natural’. Metzger’s explanation
may be somewhat restrictive: our visual environment extends
beyond our writing desk. We tend to position a movable light
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Fig. 1. Shaded displays that may be interpreted as 3D shapes and measurement of preferred
lighting direction. (a) Rotate the page to invert the shapes. (b) Images were generated on a
Silicon Graphics Indigo2. Each ̀ bubble’ spanned approximately one degree. One target pattern
was present at random among 23 distractor patterns in 50% of the trials. The remaining trials
contained 24 distractors and no target. The lighting direction is determined by the shading gra-
dient of the distractors. Target-present test screens are shown for 2 of the 12 lighting direc-
tions used in our experiment. We denote a lighting direction by its deviation from the vertical
in degrees. Positive degrees indicate lighting from the left, and negative degrees indicate lighting
from the right. Accordingly, lighting from directly overhead is designated as 0 degrees, and light-
ing from directly below as 180 degrees. (c) We used a two-alternative forced-choice stimulus
onset asynchrony (SOA) design with masking. Data was collected using a staircase method that
converged at 67% accuracy performance. The most frequently visited (MFV) duration within
each block was used to estimate 67% accuracy performance. The duration necessary for 67%
accuracy for each lighting direction is shown for subject PG. (d) We computed the mean dif-
ference in necessary display duration between pairs of corresponding left-right lighting direc-
tions over all 12 naive subjects. The necessary duration for a left-lighting condition is
subtracted from the necessary duration for the corresponding right-lighting condition.
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When we interpret a shaded picture as a three-dimensional (3D)
scene, our visual system often needs to guess the position of the light
source in order to resolve a convex-concave ambiguity. For more
than a century, psychologists have known that the visual system
assumes that light comes from above and have argued that this
assumption is ecologically justified because our everyday light source
(the sun) is overhead. Our experiments reveal that people’s preferred
lighting direction is not directly overhead, but rather shifted to the
left, and this preference is reflected in art spanning two millennia.
Furthermore, we find a strong correlation between people’s hand-
edness and their preferred lighting. We suggest that what counts is
not so much where the sun is, but where you like the sun to be.

The shaded shapes in Fig. 1a are typically perceived as convex
bubbles surrounding concave indentations, all lit from above. Note
that this image is also consistent with a different physical scene:
indentations surrounding bubbles, all lit from below. This second
perception, however, is difficult to achieve. Such an asymmetry
between the perceptual saliency of equally valid 3D interpretations
demonstrates that our visual system prefers the assumption that
light is coming from above1–3. Does this preference apply uniform-
ly to all lighting directions that are above the horizon? Perhaps there
is instead a preferred direction? If so, one might reason it to be direct-
ly overhead. Is this intuitive guess correct?

We addressed these questions by measuring the time it takes
to detect, within a group of ‘distractor’ bubbles, a single ‘target’
bubble that is lit differently (Fig. 1b). Recent studies suggests that
the light-from-above assumption is used by the visual system for
interpreting quickly and in parallel some basic aspects of 3D
scenes4–8; the target pattern may be detected quickly (pop-out)
only when the distractors, but not the target, can be interpreted
as convex and lit from above5–9. We simulated different directions
of lighting by varying the shading gradient of the distractor bub-
bles. The target bubble was shaded to simulate illumination from
the opposite direction (Fig. 1b).

Data from twelve naive subjects shows that the visual system
does not respond uniformly to all lighting directions that are above
the horizon (Fig. 1c). There is clearly a preferred direction of light-
ing where detection requires the shortest display time. Surpris-
ingly, this preferred direction is not directly overhead (zero
degrees). Subject PG, for instance, performs best with a lighting
direction that is between 30 and 60 degrees left of the vertical
(Fig. 1c). Furthermore, there is a consistent preference for left light-
ing over right lighting. This same marked left–right asymmetry is
evident in the averaged data of all twelve subjects. As the angle of
illumination increases, the preference for left lighting becomes
increasingly pronounced (Fig. 1d).

This asymmetry in our data may explain a qualitative observa-
tion made by Gestalt psychologist Metzger, who noted that left-lit
scenes have a superior perceptual value over right-lit ones10. He
ascribed this asymmetry to the convention of setting up desk lamps
on the left, presumably so that the writing hand does not cast a
shadow on the page. Over time, he hypothesized, one learns to per-
ceive left-lit scenes as being more ‘natural’. Metzger’s explanation
may be somewhat restrictive: our visual environment extends
beyond our writing desk. We tend to position a movable light
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Fig. 1. Shaded displays that may be interpreted as 3D shapes and measurement of preferred
lighting direction. (a) Rotate the page to invert the shapes. (b) Images were generated on a
Silicon Graphics Indigo2. Each ̀ bubble’ spanned approximately one degree. One target pattern
was present at random among 23 distractor patterns in 50% of the trials. The remaining trials
contained 24 distractors and no target. The lighting direction is determined by the shading gra-
dient of the distractors. Target-present test screens are shown for 2 of the 12 lighting direc-
tions used in our experiment. We denote a lighting direction by its deviation from the vertical
in degrees. Positive degrees indicate lighting from the left, and negative degrees indicate lighting
from the right. Accordingly, lighting from directly overhead is designated as 0 degrees, and light-
ing from directly below as 180 degrees. (c) We used a two-alternative forced-choice stimulus
onset asynchrony (SOA) design with masking. Data was collected using a staircase method that
converged at 67% accuracy performance. The most frequently visited (MFV) duration within
each block was used to estimate 67% accuracy performance. The duration necessary for 67%
accuracy for each lighting direction is shown for subject PG. (d) We computed the mean dif-
ference in necessary display duration between pairs of corresponding left-right lighting direc-
tions over all 12 naive subjects. The necessary duration for a left-lighting condition is
subtracted from the necessary duration for the corresponding right-lighting condition.
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When we interpret a shaded picture as a three-dimensional (3D)
scene, our visual system often needs to guess the position of the light
source in order to resolve a convex-concave ambiguity. For more
than a century, psychologists have known that the visual system
assumes that light comes from above and have argued that this
assumption is ecologically justified because our everyday light source
(the sun) is overhead. Our experiments reveal that people’s preferred
lighting direction is not directly overhead, but rather shifted to the
left, and this preference is reflected in art spanning two millennia.
Furthermore, we find a strong correlation between people’s hand-
edness and their preferred lighting. We suggest that what counts is
not so much where the sun is, but where you like the sun to be.

The shaded shapes in Fig. 1a are typically perceived as convex
bubbles surrounding concave indentations, all lit from above. Note
that this image is also consistent with a different physical scene:
indentations surrounding bubbles, all lit from below. This second
perception, however, is difficult to achieve. Such an asymmetry
between the perceptual saliency of equally valid 3D interpretations
demonstrates that our visual system prefers the assumption that
light is coming from above1–3. Does this preference apply uniform-
ly to all lighting directions that are above the horizon? Perhaps there
is instead a preferred direction? If so, one might reason it to be direct-
ly overhead. Is this intuitive guess correct?

We addressed these questions by measuring the time it takes
to detect, within a group of ‘distractor’ bubbles, a single ‘target’
bubble that is lit differently (Fig. 1b). Recent studies suggests that
the light-from-above assumption is used by the visual system for
interpreting quickly and in parallel some basic aspects of 3D
scenes4–8; the target pattern may be detected quickly (pop-out)
only when the distractors, but not the target, can be interpreted
as convex and lit from above5–9. We simulated different directions
of lighting by varying the shading gradient of the distractor bub-
bles. The target bubble was shaded to simulate illumination from
the opposite direction (Fig. 1b).

Data from twelve naive subjects shows that the visual system
does not respond uniformly to all lighting directions that are above
the horizon (Fig. 1c). There is clearly a preferred direction of light-
ing where detection requires the shortest display time. Surpris-
ingly, this preferred direction is not directly overhead (zero
degrees). Subject PG, for instance, performs best with a lighting
direction that is between 30 and 60 degrees left of the vertical
(Fig. 1c). Furthermore, there is a consistent preference for left light-
ing over right lighting. This same marked left–right asymmetry is
evident in the averaged data of all twelve subjects. As the angle of
illumination increases, the preference for left lighting becomes
increasingly pronounced (Fig. 1d).

This asymmetry in our data may explain a qualitative observa-
tion made by Gestalt psychologist Metzger, who noted that left-lit
scenes have a superior perceptual value over right-lit ones10. He
ascribed this asymmetry to the convention of setting up desk lamps
on the left, presumably so that the writing hand does not cast a
shadow on the page. Over time, he hypothesized, one learns to per-
ceive left-lit scenes as being more ‘natural’. Metzger’s explanation
may be somewhat restrictive: our visual environment extends
beyond our writing desk. We tend to position a movable light
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Fig. 1. Shaded displays that may be interpreted as 3D shapes and measurement of preferred
lighting direction. (a) Rotate the page to invert the shapes. (b) Images were generated on a
Silicon Graphics Indigo2. Each ̀ bubble’ spanned approximately one degree. One target pattern
was present at random among 23 distractor patterns in 50% of the trials. The remaining trials
contained 24 distractors and no target. The lighting direction is determined by the shading gra-
dient of the distractors. Target-present test screens are shown for 2 of the 12 lighting direc-
tions used in our experiment. We denote a lighting direction by its deviation from the vertical
in degrees. Positive degrees indicate lighting from the left, and negative degrees indicate lighting
from the right. Accordingly, lighting from directly overhead is designated as 0 degrees, and light-
ing from directly below as 180 degrees. (c) We used a two-alternative forced-choice stimulus
onset asynchrony (SOA) design with masking. Data was collected using a staircase method that
converged at 67% accuracy performance. The most frequently visited (MFV) duration within
each block was used to estimate 67% accuracy performance. The duration necessary for 67%
accuracy for each lighting direction is shown for subject PG. (d) We computed the mean dif-
ference in necessary display duration between pairs of corresponding left-right lighting direc-
tions over all 12 naive subjects. The necessary duration for a left-lighting condition is
subtracted from the necessary duration for the corresponding right-lighting condition.
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When we interpret a shaded picture as a three-dimensional (3D)
scene, our visual system often needs to guess the position of the light
source in order to resolve a convex-concave ambiguity. For more
than a century, psychologists have known that the visual system
assumes that light comes from above and have argued that this
assumption is ecologically justified because our everyday light source
(the sun) is overhead. Our experiments reveal that people’s preferred
lighting direction is not directly overhead, but rather shifted to the
left, and this preference is reflected in art spanning two millennia.
Furthermore, we find a strong correlation between people’s hand-
edness and their preferred lighting. We suggest that what counts is
not so much where the sun is, but where you like the sun to be.

The shaded shapes in Fig. 1a are typically perceived as convex
bubbles surrounding concave indentations, all lit from above. Note
that this image is also consistent with a different physical scene:
indentations surrounding bubbles, all lit from below. This second
perception, however, is difficult to achieve. Such an asymmetry
between the perceptual saliency of equally valid 3D interpretations
demonstrates that our visual system prefers the assumption that
light is coming from above1–3. Does this preference apply uniform-
ly to all lighting directions that are above the horizon? Perhaps there
is instead a preferred direction? If so, one might reason it to be direct-
ly overhead. Is this intuitive guess correct?

We addressed these questions by measuring the time it takes
to detect, within a group of ‘distractor’ bubbles, a single ‘target’
bubble that is lit differently (Fig. 1b). Recent studies suggests that
the light-from-above assumption is used by the visual system for
interpreting quickly and in parallel some basic aspects of 3D
scenes4–8; the target pattern may be detected quickly (pop-out)
only when the distractors, but not the target, can be interpreted
as convex and lit from above5–9. We simulated different directions
of lighting by varying the shading gradient of the distractor bub-
bles. The target bubble was shaded to simulate illumination from
the opposite direction (Fig. 1b).

Data from twelve naive subjects shows that the visual system
does not respond uniformly to all lighting directions that are above
the horizon (Fig. 1c). There is clearly a preferred direction of light-
ing where detection requires the shortest display time. Surpris-
ingly, this preferred direction is not directly overhead (zero
degrees). Subject PG, for instance, performs best with a lighting
direction that is between 30 and 60 degrees left of the vertical
(Fig. 1c). Furthermore, there is a consistent preference for left light-
ing over right lighting. This same marked left–right asymmetry is
evident in the averaged data of all twelve subjects. As the angle of
illumination increases, the preference for left lighting becomes
increasingly pronounced (Fig. 1d).

This asymmetry in our data may explain a qualitative observa-
tion made by Gestalt psychologist Metzger, who noted that left-lit
scenes have a superior perceptual value over right-lit ones10. He
ascribed this asymmetry to the convention of setting up desk lamps
on the left, presumably so that the writing hand does not cast a
shadow on the page. Over time, he hypothesized, one learns to per-
ceive left-lit scenes as being more ‘natural’. Metzger’s explanation
may be somewhat restrictive: our visual environment extends
beyond our writing desk. We tend to position a movable light
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Fig. 1. Shaded displays that may be interpreted as 3D shapes and measurement of preferred
lighting direction. (a) Rotate the page to invert the shapes. (b) Images were generated on a
Silicon Graphics Indigo2. Each ̀ bubble’ spanned approximately one degree. One target pattern
was present at random among 23 distractor patterns in 50% of the trials. The remaining trials
contained 24 distractors and no target. The lighting direction is determined by the shading gra-
dient of the distractors. Target-present test screens are shown for 2 of the 12 lighting direc-
tions used in our experiment. We denote a lighting direction by its deviation from the vertical
in degrees. Positive degrees indicate lighting from the left, and negative degrees indicate lighting
from the right. Accordingly, lighting from directly overhead is designated as 0 degrees, and light-
ing from directly below as 180 degrees. (c) We used a two-alternative forced-choice stimulus
onset asynchrony (SOA) design with masking. Data was collected using a staircase method that
converged at 67% accuracy performance. The most frequently visited (MFV) duration within
each block was used to estimate 67% accuracy performance. The duration necessary for 67%
accuracy for each lighting direction is shown for subject PG. (d) We computed the mean dif-
ference in necessary display duration between pairs of corresponding left-right lighting direc-
tions over all 12 naive subjects. The necessary duration for a left-lighting condition is
subtracted from the necessary duration for the corresponding right-lighting condition.
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