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RECAP: rational analysis

A wing would be the most mystifying structure if one did
not know that birds flew. One might observe that it could
be extended a considerable distance, that it had smooth
covering of feathers with conspicuous markings, that it was
operated by powerful muscles, and that strength and

lightness were prominent features of its constructions.

These are important facts, but in themselves they do not

i—i;c-;ikace Balo
Trinity College,
Cambridge understanding something of the principles of flight, a more

tell us that birds fly. Yet, without knowing this and without

detailed examination of the wing itself would probably be

unrewarding.
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Trinity College,
Cambridge understanding something of the principles of flight, a more

tell us that birds fly. Yet, without knowing this and without

detailed examination of the wing itself would probably be
unrewarding.
Sensory communication (1962) MIT Press
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RECAP: deductive reasoning

® propositional logic: reasoning can be systematically
performed

logic function: new propositions using basic operations
(conjunction, disjunction, negation, implication)

C =f(A,B)=(A+B)(A+ AB)+ AB(A+B)
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RECAP: deductive reasoning

® propositional logic: reasoning can be systematically
performed

® 2 finite set of operations is sufficient to cover the full proposition
space

disjunctive normal form

A, B TT TF FT FF

fi(A,B)| T F F F

H(A,B)| F T F F arbitrary f (A, B) can
be composed
AL(AB)  F F T F

fa(A,B)] F F F T
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RECAP: deductive reasoning

® propositional logic: reasoning can be systematically
performed

® 2 finite set of operations is sufficient to cover the full proposition
space

® rational analysis can be performed in a world where truth values
of statements can be established

Turing machine
an agent can be constructed that can perform an arbitrary function

x— TM [—f(x)

Universal Turing machine
Irrespective of the language used one can construct such computing machines

X—
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!
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!

A-calculus
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RECAP: deductive reasoning

® propositional logic: reasoning can be systematically
performed

® 2 finite set of operations is sufficient to cover the full proposition
space

® rational analysis can be performed in a world where truth values
of statements can be established

propositional logic

extension: l

predicates . | rules of chess

logical connectives first order logic

quantifiers l in prop logic:
A-calculus 1000 pages

Universal Turing machine in first o. logic:
X— 1 page
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s this the whole story? — Challenges

® Scope of deductive reasoning is limited:
we need to make inferences in uncertain situations
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s this the whole story? — Challenges

® Scope of deductive reasoning is limited:
we need to make inferences in uncertain situations

® |t is unclear how to construct adaptive forms of reasoning:
training Is hard, hand engineering is required

Computational Cognitive Science



Rational analysis revisited
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Rational analysis revisited

® Are there ways to formalise plausible reasoning?
® |s there a rational way to approach this problem?

® \Vhat exactly determines how much the olbservation of Aristotle’s reading
skills alters the plausibility of him being a philosopher?

® |n deductive reasoning, the veracity of statements can be identified after
exhaustive chains of inferences. In plausible reasoning uncertainty grows

with subsequent iterations. Can this be characterised?

® Discovering an efficient math behind plausible reasoning can provide a
useful tool to model cognitive processes

® \\Vhat does this do with ‘weakly’ rational behaviour at Wason’s card
selection task?

Computational Cognitive Science
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Common sense: Plausible reasoning

weak syllogisms

if Ais true then B is true If A'is true then B is true
B is true A Is false
therefore, A becomes more plausible therefore, B becomes less plausible
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Common sense: Plausible reasoning

weak syllogisms

if A'is true then B is true If A'is true then B is true
B is true A Is false
therefore, A becomes more plausible therefore, B becomes less plausible

® [he truth value of many statements cannot be fully determined

® Reasoning in uncertain situations is both useful and possible:
we cannot rely on deductive reasoning

® \\We do it automatically while making inferences,
terming it common sense

® |mportantly, common sense is not an arbitrary relaxation of rules:
George Polya formalised a compact set of desiderata for reasoning

Computational Cognitive Science
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Artificial agent revisited

® \\e are pursuing common sense reasoning to understand
thinking

® [his provides better tools to build ‘machines that think’, i.e.
petter Al

® [he rational agent developed provides a normative
approach to human behaviour, in other words:

® ‘rules will be deduced from simple desiderata which, it
appears to us, would be desirable in human brains; i.e. we
think that a rational person, on discovering that they were
violating one of these desiderata, would wish to revise their
thinking’, Jaynes

Computational Cognitive Science 12



Plausiblilities

® Aristotle wants to learn about the effectiveness of his teaching

what is the truth value of S - L7

possible experiment outcomes

scribbling excited look learning possible?
1 1 1 1
1 1 0 1
0 1 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1
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Plausiblilities

® Aristotle wants to learn about the effectiveness of his teaching

what is the truth value of S - L7

possible experiment outcomes

scribbling excited look learning possible?
1 1 1 1
1 1 0 1
0 1 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

How to establish numerical values for plausibilities?

Computational Cognitive Science



Rational desiderata

® [he proposition needs to be assigned a plausibility based on available evidence:
the conditional plausibility that A is true, given that B is true, A |B

® [he richness of real numbers is required by theory

® Convention: larger plausibility corresponds to higher numbers

combining predicaments:

the plausibility that A is true, given that both B and C are true:
A|BC

the plausibility that at least one of the propositions A and B Is true,

given that both C and D are true:
A+B|CD

1. Level of certainty is expressed with real numlbers

Computational Cognitive Science
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Rational desiderata

® Qualitative match of the formalism with common sense is
required

® |f (A|C)> (A|C)
and (B|AC’) = (B|AC)
then (AB|C) > (AB|C) & (A|C)) < (A|C)

® Provides ‘sense of direction’

1. Level of certainty is expressed with real numlbers
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® Qualitative match of the formalism with common sense is
required

® |f (A|C)> (A|C)
and (B|AC’) = (B|AC)
then (AB|C) > (AB|C) & (A|C)) < (A|C)

® Provides ‘sense of direction’

1. Level of certainty is expressed with real numbers
2. Qualitative correspondence with common sense
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Rational desiderata

® 3.3, Alternative ways to achieve conclusion lead to the same
result

® 3.b, All evidence is taken into account by the agent

® 3.c, Equivalent state of knowledge is represented by equal
level of plausibility

1. Level of certainty is expressed with real numbers
2. Qualitative correspondence with common sense
3. Consistency

Computational Cognitive Science
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Cox’s theorem

Fundamental laws of probability (Kolmogorov’s axioms)
directly come from the three desiderata

® [he three desiderata uniquely determine the mathematical form of
representation of plausibility

® Plausibility has to behave as probability

Kolmogorov axioms

1. Probabillity is a real number between O and 1

2. Certainty is represented by P(A|B) =1
Certain falsehood: P(A|B) = 0

3. P(A|B)+P(A|B) =1

+1 Conjunction: P(AB |C) = P(A|BC)P(B|C)

Computational Cognitive Science
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Cox’s theorem

Fundamental laws of probability (Kolmogorov’s axioms)
directly come from the three desiderata

® [he three desiderata uniquely determine the mathematical form of
representation of plausibility

® Plausibility has to behave as probability

Kolmogorov axioms

1. Probabillity is a real number between O and 1
2. Certainty is represented by P(A|B) =1
Certain falsehood: P(A|B)=0

5. P(A|B) +P(A|B) =
+1 Conjunction: P(AB |C) = P(A | BC)P(B | C)

We can use these to express operations in plausible reasoning

It will have similar power than deductive reasoning, but extends it

Computational Cognitive Science
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Dutch book argument

® Assume that we are willing to take bets with odds
proportional to the probabillity of the occurrence of events

® |f the plausibilities are not behaving according to the rules of
probabilities then we will certainly loose money against
someone using that strategy

Computational Cognitive Science
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Dutch book argument

® Assume that we are willing to take bets with odds
proportional to the probabillity of the occurrence of events

® |f the plausibilities are not behaving according to the rules of
probabilities then we will certainly loose money against
someone using that strategy

In an environment where truth values of statements cannot fully
determined, a probabilistic description is lucrative

Computational Cognitive Science
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Probabillity table

possible experiment outcomes

scribbling excited look learning P(S,E,L)
1 1 1 0.2
1 1 0 0.1
0 1 1 0.06
1 0 0 0.17
0 0 0 0.43

Computational Cognitive Science
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Probabillity table

possible experiment outcomes

scribbling excited look learning P(S,E,L)
1 1 1 0.2
1 1 0 0.1
2 P(A,E,L) = 1
0 1 1 0.06
1 0 0 0.17
0 0 0 0.43

The probability table fully characterises the system

Instead of truth tables, we extended the scope of propositions

Computational Cognitive Science
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Inference & conditional probability

Goal: infer the probability of learning given the disciple wrote feverishly
P(L|s,e)="

scribbling excited look learning P(S,E,L)
1 1 1 0.2
1 1 0 0.1
0 1 1 0.06
1 0 0 0.17
0 0 0 0.43
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Inference & conditional probability

Goal: infer the probability of learning given the disciple wrote feverishly
P(L|s,e)="

scribbling excited look learning P(S,E,L)
1 1 1 02—
i i 0 O
0 1 1 0-66
1 0 0 0.17 Z
v V) 0 043

Computational Cognitive Science

20



Algebra on probabilities”?

Propositions: A, B, C
A B — logical product or conjunction
‘ooth of the propositions, A, B are true’

A + B — logical sum or disjunction

‘at least one of the propositions, A, B is true’

\|l. '{‘“" ) -“""l. »zl -
7 OV M/ i 2

GeorgeBooIe, 1815-1864

Computational Cognitive Science
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Sum rule

scribbling  learning P(S,L)
1 1 0.45
1 0 0.05
0 1 0.15
0 0 0.35

Computational Cognitive Science

P(l) = P(s, 1) + P(5, 1)
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Sum rule

Stochastic variable L taking value /

scribbling  learning P(S,L)
1 1 0.45 P(l) = P(s, ) + P(5, 1)
1 0 0.05
0 1 0.15
0 0 0.35
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Sum rule

hasti ilable L taki
scribbling  learning PS.L) Stochastic variable L taking value /
’ 0 0.05 P the disciple has learned the course material
0 1 0.15 I
P she learned and was scribbling
0 0 0.35 OR

P she learned and was not scribbling
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Sum rule
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P(l) = P(s, 1) + P(5, 1)

P the disciple has learned the course material

AN

P(l)=0.6 I
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Sum rule

Stochastic variable L taking value [
scribbling  learning | P(S,L) d

AN

’ ’ 0.45 P(l) = P(s, ) + P(5s, [)

P the disciple has learned the course material
1 0 0.05 P()=0.6
0 1 015 |P()=0.4
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0 0 0.35 OR
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Sum rule

Stochastic variable L taking value /

scribbling  learning P(S,L)
1 1 0.45
1 0 0.05
0 1 0.15
0 0 0.35

P(l) = P(s, ) + P(5, 1)

P the disciple has learned the course material

I

P she learned and was scribbling
OR
P she learned and was not scribbling

IN general cases when stochastic variables can take more values:

P(x) = ) P(x,y)

yeY

also known as marginalisation

Computational Cognitive Science
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Product rule

P(s, ) = P(l|s)P(s)

Computational Cognitive Science
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Product rule

This turned up at the Cox theorem,
being a consequence of the Consistency desideratum

P(s, ) = P(l|s)P(s)

Computational Cognitive Science
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FProduct rule

This turned up at the Cox theorem,
being a consequence of the Consistency desideratum

P(s, ) = P(l|s)P(s)

P the disciple has scribbled and she learned the course material

!

P the disciple has learned the course material if she was scribbling AND
P she was scribbling
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FProduct rule

This turned up at the Cox theorem,
being a consequence of the Consistency desideratum

P(s, ) = P(l|s)P(s)

P the disciple has scribbled and she learned the course material

!

P the disciple has learned the course material if she was scribbling AND
P she was scribbling

chain rule

Computational Cognitive Science
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Inference & conditional probability

Goal: infer the probability of learning given the disciple wrote feverishly
P(L|s,e)="

scribbling excited look learning P(S,E,L)
1 1 1 02—
| | 0 O
0 1 1 0-66
1 0 0 0.17 Z
V) V) V) 043

® Use the chain rule to construct the conditional probability:
P(s, e, ) = P(I|s,e)P(s, e)
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Inference & conditional probability

Goal: infer the probability of learning given the disciple wrote feverishly
P(L|s, &) =7?

scribbling excited look learning P(S,E,L)
1 1 1 02—
| | v O
0 1 1 0-06
1 0 0 0.17
O O V) 043

® Use the chain rule to construct the conditional probability:
P(s, e, ) = P(I|s,e)P(s, e)

® Probability of A assuming B is known (‘given B’): $
P(A,B) _. P(s,e D)
P(A|B) = P(l|s,e) = =
P(B) P(s, e)

Computational Cognitive Science 24



Example

scribbling  learning P(S,L)
1 1 0.45
1 0 0.05 P(s, [
P(l]5) =
P(s)
0 1 0.15
0 0 0.35

Computational Cognitive Science
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Example

P(l|s) =

IR

scribbling  learning P(S,L)
1 1 0.45
1 0 0.05
0 1 0.15
0 0 0.35
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Example

P(l|s)

IR

scribbling  learning P(S,L)
1 1 0.45
1 0 0.05
0 1 0.15
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Example

IR

scribbling  learning P(S,L)
1 1 0.45
1 0 0.05 P(s, )
P(l|s)|= =0.75
P(s)
0 1 0.15
By observing that the disciple was writing,

0 0 0.35 the reasoning that she learned the lesson

became more plausible
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Example

IR

scribbling  learning P(S,L)
1 1 0.45
1 0 0.05 P(s, )
P(l|s)|= =0.75
P(s)
0 1 0.15
By observing that the disciple was writing,

0 0 0.35 the reasoning that she learned the lesson

became more plausible

PG|l =?

Knowing the probability table rich
reasoning can be performed

Computational Cognitive Science



Interim summary

® Probabillities can be used as a basis of plausible reasoning

® |nstead of the truth table, the probability table describes the
system

® Rich inferences can be made

® Using the two fundamental rules of probability theory, the
sum and the product rules we can express these inferences

Computational Cognitive Science 26



Challenge

® Complete characterisation requires filling the probability table

® Number of lines in the probability table increases drastically with
the number of variables

® How many parameters”
(how many numbers need to be given to specify the
probabilistic model?)

Computational Cognitive Science
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Challenge

® Complete characterisation requires filling the probability table

® Number of lines in the probability table increases drastically with
the number of variables

® How many parameters”
(how many numbers need to be given to specify the
probabilistic model?)

>

oM _ 1

number of parameters

>
number of variables
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Building on knowledge about dependencies

P(S9 E’ R’ T’ F’ L)

Computational Cognitive Science
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Suilding on knowledge about dependencies

Scribbling
Excited look
Room where lecture was held

PS,E,R, T,F,L) Textbook usage

Fast talking
Learning

Computational Cognitive Science
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Textbook usage is independent of
other factors

P(A,B) =P(A|B)P(B) = P(A)P(B)

discovering structure in the problem reduces complexity

finding independencies splits up the probability table into smaller subtables
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Graphical models

PGS, E,R, T,F,L)

® Stochastic variables are represented by nodes

® Dependencies (conditional probabillities) are represented by links
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deductive reasoning plausible reasoning

propositional logic probabillity table

. !

first order logic graphical models

!
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Benefits of a graphical model representation

® helps in visualising the structure of the probabilistic model

® provides insights into the properties of the model
(e.g. conditional independence)

® complex calculations for inference and learning can be
expressed In graphical terms
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Computational insight

Independence:

X1lY

— P(X) = P(X]Y)
P(X,Y) = P(X)P(Y)
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Computational insight

Independence:
P(X) = P(X|Y)
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Conditional independence:

P(X|Z) = P(X]|Y, Z)
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N
in general: P(X;, X,, ... Xy) = H P(X; | Parent(X;))
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vosterior probability 2> 1) = P(OIH)P likelihood function
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(Generative models

the model how the world works:
how observations are determined by
the state of the environment

6 and possibly noise as well

P(O[H)

generative process

inverting the generative model:
inferences / reasoning about
observed data

&
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measurement and inference

measurement:
measuring the probability of coughing when having a flu or not

P(coughing = 1|flu=1)
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infer the probabillity of a hypothesis under different conditions

P(flu = 1| coughing = 1)

what is the connection between the two quantities?

or equivalently:
P(z,y) = P(y|z)P(x)

P(coughing = 1|flu=1)P(flu =

P(flu = 1| coughing = 1) = P(coughing = 1)

Bayes rule: ‘inverts’ a probabillistic relationship

Computational Cognitive Science

36
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P(xz) summarises all the possible values of a variable in a single function
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Probability mass function / probability density

P(x) summarises all the possible values of a variable in a single function
e discrete variables

e value of the function is listed at all possible values of x
e the function is the probability mass function

e continuous variables
e the probabillity of any particular value is equal to O

e a finite interval on the variable can have a probability
different from O

¢ the function is a probability density function
p(x)

Pr(a <z <b)=

012 F
0.10
0.08 F
0.06 F ) ¢
0.04 b ®

002 r o k=
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Examples of probability distributions

e Discrete valued
e Bernoulli — coin toss I
Ber (x;p) = p” - (1 — p)' ™" - N

e multinomial — dice throwing

e (Continuous valued

0, (x)

e uniform

e (Gaussian (hormal)

V2o

1 (z— )"\
Normal(x; p, o) = exp | —
e Gamma (.;: R\

http://golab.wigner.mta.hu
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EXxpectations and uncertainty

r=n

¢’
[\
v

Reason #1

limited information

!

uncertainty in inferences

Formally:
e multiple hypotheses
e alternative hypotheses characterised by different probabilities
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Bayesian inference
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