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• intuitive parametrization of the probabilistic model (probability table)

• independence or conditional independence of variables can be 
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• breaks down the joint distribution into simpler conditional 
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ŝ ⇠ N (µ̂, �̂2)

1

�̂2
=

1

�2
h

+
1

�2
v

µ̂ =

Xv
�2
v
+ Xh

�2
h

1
�2
h
+ 1

�2
v

CUE INTEGRATION



Statistical learning course, 2020 golab.wigner.mta.hu

Recap: cue integration

5





KÖRDING & WOLPERT, 2004

BAYESIAN INTEGRATION IN SENSORIMOTOR LEARNING

‣ Mutatóujj két pont közötti 
mozgatása 

‣ VR setup: nem valódi 
helyzet, ráadásul 
csaknéha látható 

‣ tréning: félúton és út 
végén 

‣ többi kondíció: csak 
félúton
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TASK VARIABILITY

SENSORY VARIABILITY

p(x) ⇠ N (x|µ = 1cm,�0 = 0.5cm)
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‣ a megjelenő kurzor eltolása a megadott 
priorból lett generálva véletlenszerűen 

‣ ezt 1000 tréning próba alatt lehetett 
kikövetkeztetni

‣ A különböző kondíciókban a kurzor 
különböző mértékben volt elmosódva:



KÖRDING & WOLPERT, 2004

‣ a kurzor valódi pozíciója x 
és trajektóriája (kék) 

‣ a legjobb becslés az 
elmosódott kurzor alapján 
x_s (lila) 

‣ az alany ezt x_hat-re 
(piros) javítja, mivel 
általában a prior alapján 
közelebb szokott lenni 
1cm-hez 

‣ Ezen becslésre alapozva 
túlzott mértékben korrigál 
és a céltól balra érkezik



3 HIPOTÉZIS

KÖRDING & WOLPERT, 2004

1. Csak a vizuális becslés alapján vett kompenzáció (sem a 
priort, sem a szenzoros bizonytalanságot nem veszi 
figyelembe 

2. Mindkét bizonytalanságot figyelmbe vévő optimális 
integráció 

3. Fix leképezés a vizuális megfigyelés és az eltolás között 
(figyelembe veheti a priort, de a szenzoros bizonytalanságot 
nem)
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PHYSICAL ILLUSIONS



BATTAGLIA ET AL., 2013

WHICH DIRECTION?



BATTAGLIA ET AL., 2013

VARYING OBJECT MASSES

Mass sensitive model Mass insensitive model
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Application: Causal learning in infants
• Representation of causal structure is through graphical models  

(directed acyclic graphs, DAGs) 

• Causal structure imply conditional independencies  
(causal Markov assumption) 

23

Gopnik et al (2004) Cog Sci
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Application: Causal learning in infants

• A, B, S are correlated 
• A & B are potential causes of S 
• S is independent of B conditional on A 
• S is not independent of A conditional on B 
• A causes S and B does not

24
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associative accounts solely rely on this 
measurement (e.g. Rescola Wagner)
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When we interpret a shaded picture as a three-dimensional (3D)
scene, our visual system often needs to guess the position of the light
source in order to resolve a convex-concave ambiguity. For more
than a century, psychologists have known that the visual system
assumes that light comes from above and have argued that this
assumption is ecologically justified because our everyday light source
(the sun) is overhead. Our experiments reveal that people’s preferred
lighting direction is not directly overhead, but rather shifted to the
left, and this preference is reflected in art spanning two millennia.
Furthermore, we find a strong correlation between people’s hand-
edness and their preferred lighting. We suggest that what counts is
not so much where the sun is, but where you like the sun to be.

The shaded shapes in Fig. 1a are typically perceived as convex
bubbles surrounding concave indentations, all lit from above. Note
that this image is also consistent with a different physical scene:
indentations surrounding bubbles, all lit from below. This second
perception, however, is difficult to achieve. Such an asymmetry
between the perceptual saliency of equally valid 3D interpretations
demonstrates that our visual system prefers the assumption that
light is coming from above1–3. Does this preference apply uniform-
ly to all lighting directions that are above the horizon? Perhaps there
is instead a preferred direction? If so, one might reason it to be direct-
ly overhead. Is this intuitive guess correct?

We addressed these questions by measuring the time it takes
to detect, within a group of ‘distractor’ bubbles, a single ‘target’
bubble that is lit differently (Fig. 1b). Recent studies suggests that
the light-from-above assumption is used by the visual system for
interpreting quickly and in parallel some basic aspects of 3D
scenes4–8; the target pattern may be detected quickly (pop-out)
only when the distractors, but not the target, can be interpreted
as convex and lit from above5–9. We simulated different directions
of lighting by varying the shading gradient of the distractor bub-
bles. The target bubble was shaded to simulate illumination from
the opposite direction (Fig. 1b).

Data from twelve naive subjects shows that the visual system
does not respond uniformly to all lighting directions that are above
the horizon (Fig. 1c). There is clearly a preferred direction of light-
ing where detection requires the shortest display time. Surpris-
ingly, this preferred direction is not directly overhead (zero
degrees). Subject PG, for instance, performs best with a lighting
direction that is between 30 and 60 degrees left of the vertical
(Fig. 1c). Furthermore, there is a consistent preference for left light-
ing over right lighting. This same marked left–right asymmetry is
evident in the averaged data of all twelve subjects. As the angle of
illumination increases, the preference for left lighting becomes
increasingly pronounced (Fig. 1d).

This asymmetry in our data may explain a qualitative observa-
tion made by Gestalt psychologist Metzger, who noted that left-lit
scenes have a superior perceptual value over right-lit ones10. He
ascribed this asymmetry to the convention of setting up desk lamps
on the left, presumably so that the writing hand does not cast a
shadow on the page. Over time, he hypothesized, one learns to per-
ceive left-lit scenes as being more ‘natural’. Metzger’s explanation
may be somewhat restrictive: our visual environment extends
beyond our writing desk. We tend to position a movable light
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Fig. 1. Shaded displays that may be interpreted as 3D shapes and measurement of preferred
lighting direction. (a) Rotate the page to invert the shapes. (b) Images were generated on a
Silicon Graphics Indigo2. Each ̀ bubble’ spanned approximately one degree. One target pattern
was present at random among 23 distractor patterns in 50% of the trials. The remaining trials
contained 24 distractors and no target. The lighting direction is determined by the shading gra-
dient of the distractors. Target-present test screens are shown for 2 of the 12 lighting direc-
tions used in our experiment. We denote a lighting direction by its deviation from the vertical
in degrees. Positive degrees indicate lighting from the left, and negative degrees indicate lighting
from the right. Accordingly, lighting from directly overhead is designated as 0 degrees, and light-
ing from directly below as 180 degrees. (c) We used a two-alternative forced-choice stimulus
onset asynchrony (SOA) design with masking. Data was collected using a staircase method that
converged at 67% accuracy performance. The most frequently visited (MFV) duration within
each block was used to estimate 67% accuracy performance. The duration necessary for 67%
accuracy for each lighting direction is shown for subject PG. (d) We computed the mean dif-
ference in necessary display duration between pairs of corresponding left-right lighting direc-
tions over all 12 naive subjects. The necessary duration for a left-lighting condition is
subtracted from the necessary duration for the corresponding right-lighting condition.
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When we interpret a shaded picture as a three-dimensional (3D)
scene, our visual system often needs to guess the position of the light
source in order to resolve a convex-concave ambiguity. For more
than a century, psychologists have known that the visual system
assumes that light comes from above and have argued that this
assumption is ecologically justified because our everyday light source
(the sun) is overhead. Our experiments reveal that people’s preferred
lighting direction is not directly overhead, but rather shifted to the
left, and this preference is reflected in art spanning two millennia.
Furthermore, we find a strong correlation between people’s hand-
edness and their preferred lighting. We suggest that what counts is
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The shaded shapes in Fig. 1a are typically perceived as convex
bubbles surrounding concave indentations, all lit from above. Note
that this image is also consistent with a different physical scene:
indentations surrounding bubbles, all lit from below. This second
perception, however, is difficult to achieve. Such an asymmetry
between the perceptual saliency of equally valid 3D interpretations
demonstrates that our visual system prefers the assumption that
light is coming from above1–3. Does this preference apply uniform-
ly to all lighting directions that are above the horizon? Perhaps there
is instead a preferred direction? If so, one might reason it to be direct-
ly overhead. Is this intuitive guess correct?

We addressed these questions by measuring the time it takes
to detect, within a group of ‘distractor’ bubbles, a single ‘target’
bubble that is lit differently (Fig. 1b). Recent studies suggests that
the light-from-above assumption is used by the visual system for
interpreting quickly and in parallel some basic aspects of 3D
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only when the distractors, but not the target, can be interpreted
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bles. The target bubble was shaded to simulate illumination from
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Data from twelve naive subjects shows that the visual system
does not respond uniformly to all lighting directions that are above
the horizon (Fig. 1c). There is clearly a preferred direction of light-
ing where detection requires the shortest display time. Surpris-
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(Fig. 1c). Furthermore, there is a consistent preference for left light-
ing over right lighting. This same marked left–right asymmetry is
evident in the averaged data of all twelve subjects. As the angle of
illumination increases, the preference for left lighting becomes
increasingly pronounced (Fig. 1d).
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ascribed this asymmetry to the convention of setting up desk lamps
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Fig. 1. Shaded displays that may be interpreted as 3D shapes and measurement of preferred
lighting direction. (a) Rotate the page to invert the shapes. (b) Images were generated on a
Silicon Graphics Indigo2. Each ̀ bubble’ spanned approximately one degree. One target pattern
was present at random among 23 distractor patterns in 50% of the trials. The remaining trials
contained 24 distractors and no target. The lighting direction is determined by the shading gra-
dient of the distractors. Target-present test screens are shown for 2 of the 12 lighting direc-
tions used in our experiment. We denote a lighting direction by its deviation from the vertical
in degrees. Positive degrees indicate lighting from the left, and negative degrees indicate lighting
from the right. Accordingly, lighting from directly overhead is designated as 0 degrees, and light-
ing from directly below as 180 degrees. (c) We used a two-alternative forced-choice stimulus
onset asynchrony (SOA) design with masking. Data was collected using a staircase method that
converged at 67% accuracy performance. The most frequently visited (MFV) duration within
each block was used to estimate 67% accuracy performance. The duration necessary for 67%
accuracy for each lighting direction is shown for subject PG. (d) We computed the mean dif-
ference in necessary display duration between pairs of corresponding left-right lighting direc-
tions over all 12 naive subjects. The necessary duration for a left-lighting condition is
subtracted from the necessary duration for the corresponding right-lighting condition.
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only when the distractors, but not the target, can be interpreted
as convex and lit from above5–9. We simulated different directions
of lighting by varying the shading gradient of the distractor bub-
bles. The target bubble was shaded to simulate illumination from
the opposite direction (Fig. 1b).

Data from twelve naive subjects shows that the visual system
does not respond uniformly to all lighting directions that are above
the horizon (Fig. 1c). There is clearly a preferred direction of light-
ing where detection requires the shortest display time. Surpris-
ingly, this preferred direction is not directly overhead (zero
degrees). Subject PG, for instance, performs best with a lighting
direction that is between 30 and 60 degrees left of the vertical
(Fig. 1c). Furthermore, there is a consistent preference for left light-
ing over right lighting. This same marked left–right asymmetry is
evident in the averaged data of all twelve subjects. As the angle of
illumination increases, the preference for left lighting becomes
increasingly pronounced (Fig. 1d).

This asymmetry in our data may explain a qualitative observa-
tion made by Gestalt psychologist Metzger, who noted that left-lit
scenes have a superior perceptual value over right-lit ones10. He
ascribed this asymmetry to the convention of setting up desk lamps
on the left, presumably so that the writing hand does not cast a
shadow on the page. Over time, he hypothesized, one learns to per-
ceive left-lit scenes as being more ‘natural’. Metzger’s explanation
may be somewhat restrictive: our visual environment extends
beyond our writing desk. We tend to position a movable light
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Fig. 1. Shaded displays that may be interpreted as 3D shapes and measurement of preferred
lighting direction. (a) Rotate the page to invert the shapes. (b) Images were generated on a
Silicon Graphics Indigo2. Each ̀ bubble’ spanned approximately one degree. One target pattern
was present at random among 23 distractor patterns in 50% of the trials. The remaining trials
contained 24 distractors and no target. The lighting direction is determined by the shading gra-
dient of the distractors. Target-present test screens are shown for 2 of the 12 lighting direc-
tions used in our experiment. We denote a lighting direction by its deviation from the vertical
in degrees. Positive degrees indicate lighting from the left, and negative degrees indicate lighting
from the right. Accordingly, lighting from directly overhead is designated as 0 degrees, and light-
ing from directly below as 180 degrees. (c) We used a two-alternative forced-choice stimulus
onset asynchrony (SOA) design with masking. Data was collected using a staircase method that
converged at 67% accuracy performance. The most frequently visited (MFV) duration within
each block was used to estimate 67% accuracy performance. The duration necessary for 67%
accuracy for each lighting direction is shown for subject PG. (d) We computed the mean dif-
ference in necessary display duration between pairs of corresponding left-right lighting direc-
tions over all 12 naive subjects. The necessary duration for a left-lighting condition is
subtracted from the necessary duration for the corresponding right-lighting condition.
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When we interpret a shaded picture as a three-dimensional (3D)
scene, our visual system often needs to guess the position of the light
source in order to resolve a convex-concave ambiguity. For more
than a century, psychologists have known that the visual system
assumes that light comes from above and have argued that this
assumption is ecologically justified because our everyday light source
(the sun) is overhead. Our experiments reveal that people’s preferred
lighting direction is not directly overhead, but rather shifted to the
left, and this preference is reflected in art spanning two millennia.
Furthermore, we find a strong correlation between people’s hand-
edness and their preferred lighting. We suggest that what counts is
not so much where the sun is, but where you like the sun to be.

The shaded shapes in Fig. 1a are typically perceived as convex
bubbles surrounding concave indentations, all lit from above. Note
that this image is also consistent with a different physical scene:
indentations surrounding bubbles, all lit from below. This second
perception, however, is difficult to achieve. Such an asymmetry
between the perceptual saliency of equally valid 3D interpretations
demonstrates that our visual system prefers the assumption that
light is coming from above1–3. Does this preference apply uniform-
ly to all lighting directions that are above the horizon? Perhaps there
is instead a preferred direction? If so, one might reason it to be direct-
ly overhead. Is this intuitive guess correct?

We addressed these questions by measuring the time it takes
to detect, within a group of ‘distractor’ bubbles, a single ‘target’
bubble that is lit differently (Fig. 1b). Recent studies suggests that
the light-from-above assumption is used by the visual system for
interpreting quickly and in parallel some basic aspects of 3D
scenes4–8; the target pattern may be detected quickly (pop-out)
only when the distractors, but not the target, can be interpreted
as convex and lit from above5–9. We simulated different directions
of lighting by varying the shading gradient of the distractor bub-
bles. The target bubble was shaded to simulate illumination from
the opposite direction (Fig. 1b).

Data from twelve naive subjects shows that the visual system
does not respond uniformly to all lighting directions that are above
the horizon (Fig. 1c). There is clearly a preferred direction of light-
ing where detection requires the shortest display time. Surpris-
ingly, this preferred direction is not directly overhead (zero
degrees). Subject PG, for instance, performs best with a lighting
direction that is between 30 and 60 degrees left of the vertical
(Fig. 1c). Furthermore, there is a consistent preference for left light-
ing over right lighting. This same marked left–right asymmetry is
evident in the averaged data of all twelve subjects. As the angle of
illumination increases, the preference for left lighting becomes
increasingly pronounced (Fig. 1d).

This asymmetry in our data may explain a qualitative observa-
tion made by Gestalt psychologist Metzger, who noted that left-lit
scenes have a superior perceptual value over right-lit ones10. He
ascribed this asymmetry to the convention of setting up desk lamps
on the left, presumably so that the writing hand does not cast a
shadow on the page. Over time, he hypothesized, one learns to per-
ceive left-lit scenes as being more ‘natural’. Metzger’s explanation
may be somewhat restrictive: our visual environment extends
beyond our writing desk. We tend to position a movable light
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Fig. 1. Shaded displays that may be interpreted as 3D shapes and measurement of preferred
lighting direction. (a) Rotate the page to invert the shapes. (b) Images were generated on a
Silicon Graphics Indigo2. Each ̀ bubble’ spanned approximately one degree. One target pattern
was present at random among 23 distractor patterns in 50% of the trials. The remaining trials
contained 24 distractors and no target. The lighting direction is determined by the shading gra-
dient of the distractors. Target-present test screens are shown for 2 of the 12 lighting direc-
tions used in our experiment. We denote a lighting direction by its deviation from the vertical
in degrees. Positive degrees indicate lighting from the left, and negative degrees indicate lighting
from the right. Accordingly, lighting from directly overhead is designated as 0 degrees, and light-
ing from directly below as 180 degrees. (c) We used a two-alternative forced-choice stimulus
onset asynchrony (SOA) design with masking. Data was collected using a staircase method that
converged at 67% accuracy performance. The most frequently visited (MFV) duration within
each block was used to estimate 67% accuracy performance. The duration necessary for 67%
accuracy for each lighting direction is shown for subject PG. (d) We computed the mean dif-
ference in necessary display duration between pairs of corresponding left-right lighting direc-
tions over all 12 naive subjects. The necessary duration for a left-lighting condition is
subtracted from the necessary duration for the corresponding right-lighting condition.
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Possible remedies

1.point estimation
i.  optimisation
ii.Expectation Maximization 

2.variational approximation:
a. pretending P( ) is a Normal distribution; 
b. find the best Normal distribution
c. calculate the integral

3. sampling (Monte Carlo methods)

30

Integral is intractable (a.k.a. impossible), approximation is needed
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Sampling

31

• balls are ‘examples’ from the distribution
• the proportion of balls at different possible positions is proportional to the distribution
• skimming through these examples we can approximate the distribution
• (one can think of building a histogram instead of specifying the parameters of a distribution)
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Sampling methods

• Assumption: we can access a scaled version of the 
probability distribution: P*(x) = c P(x)  

• Motivation: inferring the posterior with Bayes rule:

32

𝖯(𝗑 |𝖣𝖺𝗍𝖺) =
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Sampling methods

• Assumption: we can access a scaled version of the 
probability distribution: P*(x) = c P(x)  

• Motivation: inferring the posterior with Bayes rule:

32

𝖯(𝗑 |𝖣𝖺𝗍𝖺) =
𝖯(𝖣𝖺𝗍𝖺 |𝗑)𝖯(𝗑)

𝖯(𝖣𝖺𝗍𝖺)

marginal distribution —  
invokes complicated integrals, 
costly to calculate

∝ 𝖼 ⋅ 𝖯(𝖣𝖺𝗍𝖺 |𝗑)𝖯(𝗑)
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Rejection sampling

34

REJECTION SAMPLING

STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN

P ⇤(x)

C ·Q(x)

𝗑 ∼ 𝖰(𝗑)

•  the proposal density, Q(x), is a distribution from which we can obtain samples 
(have a random generator for it, e.g. Gaussian)

𝗒 ∼ 𝗎𝗇𝗂𝖿𝗈𝗋𝗆(𝟢, 𝖼𝖰(𝗑))

• a point along the vertical axis is sampled between 0 and the Q(x) is a distribution  
from which we can obtain samples (have a random generator for it, e.g. Gaussian)

𝗒

• proposal is accepted if y is lower than P*(x)



Statistical learning course, 2020 golab.wigner.mta.hu

Rejection sampling

35



Statistical learning course, 2020 golab.wigner.mta.hu

Rejection sampling

36



Statistical learning course, 2020 golab.wigner.mta.hu

Rejection sampling problems

• c⋅Q(x) needs to be larger than P*(x), otherwise sampling will 
be biased (do not come from the target distribution) 

• If c⋅Q(x) is too large then proportion of failed samples will 
increase 

• It is not effective in high dimensions

37
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Ancestral sampling

• We are aiming to obtain a 
sample from the joint 
distribution

• We first sample the ‘ancestors’

• Progressively sample 
descendants of sampled 
ancestors

38

exam 
score

difficulty

exam 
grade

intellige
nce

entry 
exam

P(d) P(i)

P(s | d) P(s | i) P(y | i)

P(g | s)

How can we make inferences?  
(obtain samples for arbitrary conditional distributions)
->  rejection sampling: drop those samples  
     that are inconsistent with the conditions
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we only want to calculate expectations over this distribution
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Importance sampling
• Instead of obtaining samples from the target distribution, P(x), 

we only want to calculate expectations over this distribution

• We can  sample a proposal distribution Q*(x)

• ‘Importance’ of the sample from Q*(x) is set by the weight

• The estimate is a weighted sum over samples

39

𝖤[𝖿(𝗑)] = ∫ 𝖿(𝗑)𝖯(𝗑) d𝗑

𝗐𝗍 =
𝖯(𝗑)

𝖰*(𝗑)

̂𝖿(𝗑) =
∑𝗍 𝗐𝗍𝖿(𝗑)

∑𝗍 𝗐𝗍
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Importance sampling challenges

• Regions where Q*(x) is small but P(x) is high are problematic 

• The variance of the estimator cannot be reliably estimated 

• In high dimensions (unless Q*(x) is a very good estimator) a 
very large number of samples is needed for a good estimate

40
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Efficient Monte Carlo methods
• Markov chain Monte Carlo (MCMC) methods: 

• Samples are generated sequentially: 

• Subsequent samples rely on earlier ones so that we 
sample regions where the probability mass is substantial

41

relatively fewer samples come 
from this region, efforts should 
be limited here

many samples are expected 
around this region

• Drawback: we abandon independence of samples

reliability of Monte Carlo 
integrals directly increases 
with independent samples 
only

• ‘Slow mixing’: Multiple Markov chain Monte Carlo samples 
equal to the contribution of an independent sample
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STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN
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Metropolis Hastings algorithm 

• After a large number of steps xt ~ P(x),  
i.e. the histogram of xt is faithfully representing P(x) 

• Initial samples depend on the initial choice:  
samples in the burn-in period need to be discarded 

• Since samples are not independent, closely samples can be 
discarded: thinning

43
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Significance of sampling

• An efficient sampling architecture can save us from scary 
integrals: we can side step the bizarre math 

• Sampling bridges the gap between the mathematical 
transparency of inference on discrete variables and the 
cumbersome inference on continuous variables 

• Sampling, as an approximate strategy to perform plausible 
reasoning might be used by humans to make inferences 
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