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Abstract

Binz et al. argue that meta-learned models offer
a new paradigm to study human cognition. Meta-
learned models are proposed as alternatives to
Bayesian models based on their capability to learn
identical predictive distributions. In our commentary,
we highlight a number of arguments that reach be-
yond a predictive distribution-based comparison, of-
fering new perspectives to evaluate the advantages
of these modeling paradigms.

In their review, Binz et al. propose a framework for
studying the adaptive nature of the mind. They pro-
pose that recent advances in machine learning em-
power meta-learning paradigms to be used as a flex-
ible and general framework for studying the compu-
tations, the representations, and even the neuronal
processes underlying learning. The authors put for-
ward a number of arguments that provide support
for such a paradigm. In this commentary, we aim to
reflect on these arguments in order to better iden-

tify the advantages and limits of using meta-learned
models instead of Bayesian ones.

The authors pit the meta-learning paradigm
against Bayesian approaches. Bayesian models
provide a similarly general framework for formu-
lating learning problems as meta-learned models,
but the two paradigms differ in the principles that
guide model construction. In contrast with the pri-
marily data-driven approach of meta-learned mod-
els, Bayesian approaches formulate the compu-
tational challenge humans face when performing
task(s) through the definition of likelihood and priors,
which summarize our assumptions about the rele-
vant quantities of the computational challenge and
our prior beliefs about these quantities. In other
words, when constructing a Bayesian model, one
needs to define a generative model of the task and
also the relevant quantities that shape the learn-
ing procedure, which instantly provides a set of
testable hypotheses and, thus, an opportunity to bet-
ter understand cognition. The authors challenge
the Bayesian approach by pointing out that in com-
plex tasks, both defining and evaluating the likeli-
hood can be impossible, and the function classes
that Bayesian models rely on can be severely con-
strained. The authors argue that these challenges
can be circumvented by using meta-learned models
instead. To support the paradigm shift, the authors
cite promising new studies that explore the equiv-
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alence of meta-learned models and Bayesian ap-
proaches. While these unifying views certainly con-
tribute to a better understanding of learning, some
aspects of these views deserve further considera-
tion.

The authors argue that it is the posterior predic-
tive distribution that a model ultimately learns, and
thus, this quantity provides a platform to compare
alternative approaches. The posterior predictive dis-
tribution is then used to establish the equivalence of
Bayesian and meta-learned models. We would chal-
lenge this view based on two observations. First,
it is important to point out that in its general form,
the posterior predictive distribution is not a quantity
that is invariant for a set of tasks, but it depends on
the choice of the prior. This also means that the
equivalence of the meta-learner and the Bayesian
learner is constrained. This constraint can be illu-
minated by considering the contribution of the pri-
ors in Bayesian models. The effect of prior is most
pronounced when data is scarce. In such cases,
the equivalence is hard to establish as it is unclear
what sort of prior the meta-learner model implicitly
assumes. When data is abundant, however, the con-
tribution of the prior diminishes, and in such cases,
it is easier to establish the equivalence of the two
model classes. Second, comparing Bayesian mod-
els and deep networks based on predictive perfor-
mance alone ignores the power of having a frame-
work that permits combining structured knowledge
representations with powerful inference (Griffiths et
al., 2010; Kemp et al., 2007; Kemp & Tenenbaum,
2008; Tenenbaum et al., 2006, 2011). A key benefit
of Bayesian modeling is the characterization of gen-
erative models that could plausibly account for the
behavioral outcomes. Creating and testing hypothe-
ses regarding these generative models enables us
to better understand the computations that underlie
cognition and give rise to the behavioral outcome.

The authors refer to inductive biases that can
be transparently captured by meta-learned models,
some of which are not necessarily easy to capture
in Bayesian models. While we agree that some
forms of inductive biases are readily delivered by
these meta-learned models, Bayesian models too
are capable of investigating relevant inductive bi-

ases. These inductive biases might include assump-
tions about the function classes that learning oper-
ates on (Kemp & Tenenbaum, 2008) or assumptions
about the computational complexity of the genera-
tive model (Csikor et al., 2023) both of which can
be phrased through the definition of the likelihood.
Such inductive biases can be explored by pitting
them against alternatives and assessing the models’
power to predict human learning. In summary, we
argue that characterization of learning through the
specification of the generative model, comprised of
the prior and the likelihood, makes it possible to ex-
plore the assumptions behind the models, which as-
sumptions may remain hidden in meta-learned mod-
els.

Finally, it’s important to clarify that we agree with
the authors that more flexible tools provide unique
opportunities to study a broader class of phenom-
ena. However, recent advances in Bayesian mod-
els open new opportunities in this aspect, e.g. vari-
ational autoencoders (Nagy et al., 2020; Spens &
Burgess, 2024), non-parametric methods (Éltető et
al., 2022; Heald et al., 2021; Török et al., 2022), or
probabilistic programming (Lake et al., 2015), might
leverage the need to meticulously define model ar-
chitectures a priori by the experimenter and will com-
plement the data-driven meta-learning approach
proposed by the authors. In particular, the contri-
bution of changing inductive biases to task perfor-
mance in humans has been recently investigated in
an implicit learning paradigm using a non-parametric
Bayesian approach (Székely et al., 2024). In gen-
eral, a combination of flexible nonlinear Bayesian
models with structure learning is particularly appeal-
ing and has proven to be a valuable tool in continual
learning (Achille et al., 2018; Rao et al., 2019).
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